-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_attention.py
202 lines (143 loc) · 6.81 KB
/
lstm_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import numpy as np
import pandas as pd
import tensorflow as tf
import os
import math
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from tensorflow.keras import backend as K
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from attention import Attention
from pose_feature_extractor import PoseFeatureExtractor
def prepare_metadata():
video_metadata = pd.read_csv("likes.csv")
video_metadata = video_metadata.sort_values(by=['Video_Title'])
video_metadata = video_metadata.iloc[:,1:]
scaler = StandardScaler()
data = video_metadata['Likes'].values.reshape(-1, 1)
standardize_likes = scaler.fit_transform(data)
video_metadata['Standardized_Likes'] = np.ravel(standardize_likes)
video_metadata.to_csv("stats.csv",index=False)
def create_dataset():
datafiles = 'C:\\Users\\vaibh\\PycharmProjects\\TedxCapstoneDataSet\\body_segments_normalized_new'
video_metadata = pd.read_csv('C:\\Users\\vaibh\\PycharmProjects\\TedxCapstoneDataSet\\stats.csv')
data = []
seg_list = []
for file, idx in zip(os.listdir(datafiles), video_metadata.index):
video = pd.read_csv(datafiles + "\\" + file)
likes = video_metadata['Popularity'][idx]
select_cols = [col for col in video if "c" not in col]
video_segment = video[select_cols]
print(len(video_segment))
if len(video_segment) > 30:
length, mod = divmod(len(video_segment), 30)
for part in range(0, (length * 30), 30):
segment = video_segment.iloc[part:part + 30, :38]
if len(segment) < 30:
print("bad segment")
#print(idx, " : >>>>" ,segment.shape)
data.append([segment, likes])
seg_list.append(len(data))
X = np.stack([data[i][0] for i in range(len(data))])
y = np.stack([data[i][1] for i in range(len(data))])
return X, y, seg_list
def test_train_split(X, y, segment_splits):
split = int(len(segment_splits) * 0.8)
X_train, X_test = X[:segment_splits[:split][-1]], X[segment_splits[:split][-1]:]
y_train, y_test = y[:segment_splits[:split][-1]], y[segment_splits[:split][-1]:]
return X_train, X_test, y_train, y_test
def model(X,y,seg_list):
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
X_train, X_test, y_train, y_test = test_train_split(
X, y, seg_list)
for units,epochs,batch_size in [(128, 200, 64),(128, 250, 64),(128, 250, 32),(128, 300, 64), (256, 300, 48), (128, 450, 32), (128, 500, 32),
(128, 500, 64)]:
model = Sequential()
model.add(LSTM(units, input_shape=(30, 38), return_sequences=True))
model.add(Attention())
#model.add(LSTM(64))
model.add(Dropout(0.2))
model.add(Dense(64))
model.add(Dense(32,activation="sigmoid"))
model.add(Dropout(0.2))
model.add(Dense(1,activation="softmax"))
#print(model.summary())
model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, verbose=2,validation_split=0.1,shuffle=True)
plot_error(history, units, epochs, batch_size)
test_loss,test_acc=model.evaluate(X_test, y_test, verbose=2)
text_file = open(str(epochs)+ "--" +str(batch_size) +"=="+ str(units) +".txt", "w+")
text_file.write("Test Loss: {}' --- Test Accuracy: {}".format(test_loss,test_acc))
text_file.close()
trainPredict = model.predict(X_train)
testPredict = model.predict(X_test)
print(confusion_matrix(y_test, testPredict))
print(classification_report(y_test, testPredict))
print(accuracy_score(y_test, testPredict))
plt.figure(figsize=(16, 6))
plt.subplot(1, 2, 1)
plot_graphs(history, 'accuracy')
plt.subplot(1, 2, 2)
plot_graphs(history, 'loss')
plt.savefig('{0} -- {1} -- {2}.png'.format(units,epochs,batch_size))
def plot_error(history, units, epochs, batch_size):
loss = [loss_per_epoch / batch_size for loss_per_epoch in history.history['loss']]
plt.plot(loss, label='loss',linestyle="--")
plt.plot([loss_per_epoch / batch_size for loss_per_epoch in history.history['val_loss']], label='val_loss')
#yhat = savgol_filter((history.history['loss'] / batch_size), 5, 3)
#plt.plot(yhat, label='smoothed', linestyle="-")
plt.xlabel('Epoch')
plt.ylabel('Error')
plt.title("lstm units {0}|epochs {1}|batch size {2} att \n".format(units, epochs, batch_size))
plt.legend()
plt.grid(True)
plt.savefig("loss({0} ;; {1} ;; {2}).png".format(units, epochs, batch_size))
plt.close()
def plot_graphs(history, metric):
plt.plot(history.history[metric])
plt.plot(history.history['val_'+metric], '')
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend([metric, 'val_'+metric])
def plot_predictions(X_train, y_train, X_test, y_test, trainPred, testPred, units, epochs, batch_size):
plt.figure()
plt.subplot(211)
# TRAINING PREDICTIONS
n = len(y_train)
y_train = np.reshape([y_train], (n, 1))
trainScore = math.sqrt(mean_squared_error(y_train, trainPred))
testScore = math.sqrt(mean_absolute_error(y_test, testPred))
plt.plot(y_train, color='black', label='Actual', linestyle='dashdot')
plt.plot(trainPred, color='green', label='Predicted', linestyle="-")
plt.xlabel('samples')
plt.ylabel('Likes')
plt.ylim([0, 1])
plt.title("lstm units {0}|epochs {1}| batch size {2} att \n RMSE acheived {3} (training)".format(units, epochs, batch_size,trainScore))
plt.figlegend(loc='upper right')
# TESTING PREDICTIONS
plt.subplot(212)
n = len(y_test)
y_test = np.reshape([y_test], (n, 1))
plt.plot(y_test,color='black', label='Actual',linestyle='dashdot')
plt.plot(testPred, color='green', label='Predicted',linestyle='-')
plt.xlabel('samples')
plt.ylabel('Likes')
plt.ylim([0, 1])
plt.title(
"lstm units {0}|epochs {1}| batch size {2} \n MAE acheived {3} (Testing)".format(units, epochs, batch_size, testScore))
plt.subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=1, hspace=1)
plt.savefig("predictions({0} ;; {1} ;; {2}).png".format(units,epochs,batch_size))
plt.close()
if __name__ == '__main__':
#prepare_metadata()
X,y,seg_list = create_dataset()
#features,labels = generate_RF_features(X, y)
model(X,y,seg_list)