-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormalization_factor.py
105 lines (80 loc) · 3.7 KB
/
normalization_factor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
import pandas as pd
import os
def point_pair_distances(joint_1, joint_2, points_data):
# get the point data for these joints....
p0 = points_data[:, joint_1 * 2:joint_1 * 2 + 2]
p1 = points_data[:, joint_2 * 2:joint_2 * 2 + 2]
# calculate the pair-wise distance and difference
diff = p0 - p1
diff_square = diff ** 2
diff_sum_col = np.sum(diff_square, axis=1)
pair_dist = np.sqrt(diff_sum_col)
# check the special case when point is not captured(0, 0, 0)
sum_p0 = p0.sum(axis=1)
sum_p1 = p1.sum(axis=1)
min_sum = np.minimum(sum_p0, sum_p1)
# keep the valid information only(without special cases)
pair_dist = pair_dist[min_sum > 0.0]
diff = diff[min_sum > 0.0]
return pair_dist, diff
def time_seg_avg_dist(dist, seg_len, ignore_value=-10):
frames = np.arange(dist.shape[0])
avg_frames = []
avg_dists = []
var_dists = []
for ind in range(0, dist.shape[0], seg_len):
if ind + seg_len - 1 >= dist.shape[0]:
break
# middle position of each small sequencial segment
avg_frames.append((frames[ind] + frames[ind + seg_len - 1]) / 2)
segment_dist = dist[ind:ind + seg_len]
# check special case when one point in the pair is not detected: (0, 0, 0)
segment_dist = [item for item in segment_dist if item != ignore_value]
if segment_dist == []:
avg_dists.append(ignore_value)
var_dists.append(ignore_value)
continue
avg_dist = np.mean(segment_dist)
var_dist = np.var(segment_dist)
avg_dists.append(avg_dist)
var_dists.append(var_dist)
return avg_dists
def test_normalize():
body_segments = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'body_segments_all')
body_segments_normalized = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'body_segments_normalized_new')
for file in os.listdir(body_segments):
df = pd.read_csv(body_segments+ "\\" +file)
col = df.columns[0]
if "Unnamed" in col:
df.drop(df.columns[0],axis=1,inplace=True)
pair_dist,_ = point_pair_distances(1,8,df.values)
norm_factor = time_seg_avg_dist(pair_dist, 30)
df['Norm_Factor'] = pd.Series([norm_factor[0]] * len(df))
print(len(df.columns))
df.to_csv(body_segments_normalized + "\\" + file, index=False)
else:
pair_dist, _ = point_pair_distances(1, 8, df.values)
norm_factor = time_seg_avg_dist(pair_dist, 30)
df['Norm_Factor'] = pd.Series([norm_factor[0]] * len(df))
print(len(df.columns))
df.to_csv(body_segments_normalized + "\\" + file, index=False)
"""
for x_col in df.columns[:37:2]:
for idx,val in enumerate(df[x_col]):
if df['pose_x1'][idx] - df['pose_x0'][idx] == 0.0 or x_col == 'pose_x0' or x_col == 'pose_x1':
continue
else:
df[x_col][idx] = abs(val - df['pose_x1'][idx]) / abs(df['pose_x1'][idx] - df['pose_x0'][idx])
for y_col in df.columns[1:38:2]:
for idx,val in enumerate(df[y_col]):
if df['pose_y1'][idx] - df['pose_y0'][idx] == 0.0 or y_col == 'pose_y0' or y_col == 'pose_y1':
continue
else:
df[y_col][idx] = abs(val - df['pose_y1'][idx]) / abs(df['pose_y1'][idx] - df['pose_y0'][idx])
df = df.iloc[:,:38]
cols = df.columns
df = MinMaxScaler().fit_transform(df.values)
"""
if __name__ == '__main__':
test_normalize()