-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpose_feature_extractor.py
279 lines (213 loc) · 10.4 KB
/
pose_feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import numpy as np
from utils import Statistics
class PoseFeatureExtractor:
def __init__(self, feature_points, segment_length,norm_factor):
self.feature_points = feature_points
self.segment_length = segment_length
self.norm_factor = norm_factor
def extract(self, lecture_pose_segments):
features = []
for feature_paramaters in self.feature_points:
feature_target = feature_paramaters[0]
if isinstance(feature_target, tuple):
#print("Add features from bone of {0}".format(feature_target))
new_features = self.get_pair_feature(lecture_pose_segments, feature_paramaters)
elif isinstance(feature_target, int):
#print("Add features from point of {0}".format(feature_target))
new_features = self.get_point_feature(lecture_pose_segments, feature_paramaters)
else:
print("Invalid feature configuration")
print(feature_paramaters)
new_features = []
"""
elif feature_target == "out_skeleton":
print("Add features from skeleton captured confidence {0}".format(feature_target))
new_features = self.get_skeleton_out_feature(lecture_pose_segments)
"""
features.append(new_features)
#print("NEW FEATURES", new_features.shape)
features = np.hstack(features)
#print("FEATURES", features.shape)
return features
def get_feature_dataset(self, lecture_pose_segments):
dataset = {
"features": self.extract(lecture_pose_segments)
}
return dataset
# add pair of points features
def get_pair_feature(self, video_pose_segments, feature_paramaters):
joint_1, joint_2 = feature_paramaters[0]
abs_diff_flag = feature_paramaters[1] # absolute difference on/raw difference on
avg_flag = feature_paramaters[2]
var_flag = feature_paramaters[3]
med_flag = feature_paramaters[4]
#conf_flag = feature_paramaters[5]
new_features = []
for segments in video_pose_segments:
temp_feature = []
# get dist between target points from all frames
abs_all, diff_all = PoseFeatureExtractor.point_pair_distances(joint_1, joint_2, segments)#,
#lecture_pose_segments.point_dim)
# there is only (seg_len - 1) frame to frame difference
abs_statics = Statistics.get_statics(abs_all, self.segment_length)
diff_statics = Statistics.get_statics(diff_all, self.segment_length)
if abs_diff_flag:
if avg_flag:
temp_feature.append(abs_statics.average)
if var_flag:
temp_feature.append(abs_statics.var)
if med_flag:
temp_feature.append(abs_statics.median)
else:
if avg_flag:
temp_feature.append(diff_statics.average)
if var_flag:
temp_feature.append(diff_statics.var)
if med_flag:
temp_feature.append(diff_statics.median)
#print("Normalization factor ", lecture_pose_segments.norm_factor)
temp_feature = np.hstack(temp_feature)
if self.norm_factor >= 0.1:
temp_feature = np.hstack(temp_feature) / self.norm_factor
temp_feature = list(temp_feature)
new_features.append(temp_feature)
#print("size of feature from {0},{1} is: {2}".format(joint_1, joint_2, a.shape))
return np.array(new_features)
# add single point features
def get_point_feature(self, video_segments, feature_paramaters):
test_target = feature_paramaters[0]
# absolute difference statics on/off
abs_avg_flag = feature_paramaters[1]
abs_var_flag = feature_paramaters[2]
abs_med_flag = feature_paramaters[3]
# raw difference statics on/off
diff_avg_flag = feature_paramaters[4]
diff_var_flag = feature_paramaters[5]
diff_med_flag = feature_paramaters[6]
cov_matrix_flag = feature_paramaters[7]
#conf_flag = feature_paramaters[8]
new_features = []
for segment_data in video_segments:
temp_feature = []
# get test dist from all frames
point_info = PoseFeatureExtractor.get_point_info(test_target, segment_data)#,
#lecture_pose_segments.point_dim)
#print("POINT DIM", lecture_pose_segments.point_dim)
#print("POINT INFO", point_info)
abs_f2f_diff, abs_f2f_diff_xy, f2f_diff_xy = point_info
# there is only (seg_len - 1) frame to frame difference
abs_statics = Statistics.get_statics(abs_f2f_diff_xy, self.segment_length - 1)
diff_statics = Statistics.get_statics(f2f_diff_xy, self.segment_length - 1)
if abs_avg_flag:
temp_feature.append(abs_statics.average)
if abs_var_flag:
temp_feature.append(abs_statics.var)
if abs_med_flag:
temp_feature.append(abs_statics.median)
if diff_avg_flag:
temp_feature.append(diff_statics.average)
if diff_var_flag:
temp_feature.append(diff_statics.var)
if diff_med_flag:
temp_feature.append(diff_statics.median)
# add cov_matrix info between point_x and point_y
if cov_matrix_flag:
f2f_diff_cov = Statistics.get_cov(f2f_diff_xy)
temp_feature.append(f2f_diff_cov)
temp_feature = np.hstack(temp_feature)
if self.norm_factor >= 0.1:
temp_feature = np.hstack(temp_feature) / self.norm_factor
temp_feature = list(temp_feature)
new_features.append(temp_feature)
#print("size of feature from {0} is {1}: ".format(test_target, a.shape))
return np.array(new_features)
"""
# add skeleton out confidence feature
def get_skeleton_out_feature(self, lecture_pose_segments):
new_features = []
for segment_data in lecture_pose_segments.segments:
# we need to pick only one value of all points(x,y) since when skeleton is not captured,
# every point's values is set to be "-1000"
pick_info = segment_data.pose_data[:, 1] # pick point_y since the point_x may be affected by the train_ratio value
count = [val for val in pick_info if val == -1000]
skeleton_conf = (self.segment_length - len(count)) / self.segment_length
new_features.append([skeleton_conf])
a = np.array(new_features)
#print("size of feature is {0}: ".format(a.shape))
return np.array(new_features)
"""
# calculate pair-wise distance in all frames
@staticmethod
def point_pair_distances(joint_1, joint_2, points_data):
# get the point data for these joints....
p0 = points_data[:, joint_1*2:joint_1*2 +2]
p1 = points_data[:, joint_2*2:joint_2*2 +2]
# calculate the pair-wise distance and difference
diff = p0 - p1
diff_square = diff ** 2
diff_sum_col = np.sum(diff_square, axis=1)
pair_dist = np.sqrt(diff_sum_col)
# check the special case when point is not captured(0, 0, 0)
sum_p0 = p0.sum(axis=1)
sum_p1 = p1.sum(axis=1)
min_sum = np.minimum(sum_p0, sum_p1)
# keep the valid information only(without special cases)
pair_dist = pair_dist[min_sum >= 0.1]
diff = diff[min_sum >= 0.1]
return pair_dist, diff
# calculate point data in all frames
@staticmethod
def get_point_info(joint, points_data):
p0 = points_data[:, joint*2:joint*2+2]
# check the special case when point is not captured(0, 0, 0)
sum_p0 = p0.sum(axis=1)
min_p0 = np.minimum(sum_p0[:-1], sum_p0[1:])
#print(p0[:-1])
#print(p0[1:])
f2f_diff = p0[:-1] - p0[1:] # frame to frame difference
# abs dist from point to point avg position
diff_square = f2f_diff ** 2
diff_sum_col = np.sum(diff_square, axis=1)
abs_f2f_diff = np.sqrt(diff_sum_col)
# keep the valid information only(without special cases)
abs_f2f_diff = abs_f2f_diff[min_p0 >= 0.1]
f2f_diff = f2f_diff[min_p0 >= 0.1]
abs_f2f_diff_xy = abs(f2f_diff)
return abs_f2f_diff, abs_f2f_diff_xy, f2f_diff
# calculate the average dist during every 'seg_len' time sequence
@staticmethod
def time_seg_avg_dist(dist, seg_len, ignore_value=-10):
print("DIST", dist)
frames = np.arange(dist.shape[0])
print("FRAMES", frames)
avg_frames = []
avg_dists = []
var_dists = []
for ind in range(0, dist.shape[0], seg_len):
if ind + seg_len - 1 >= dist.shape[0]:
break
# middle position of each small sequencial segment
avg_frames.append((frames[ind] + frames[ind + seg_len - 1]) / 2)
segment_dist = dist[ind:ind + seg_len]
# check special case when one point in the pair is not detected: (0, 0, 0)
segment_dist = [item for item in segment_dist if item != ignore_value]
if segment_dist == []:
avg_dists.append(ignore_value)
var_dists.append(ignore_value)
continue
avg_dist = np.mean(segment_dist)
var_dist = np.var(segment_dist)
avg_dists.append(avg_dist)
var_dists.append(var_dist)
return avg_dists, var_dists, avg_frames
@staticmethod
def combine_datasets(data_list, data_dictionary):
data_x = []
data_y = []
frame_infos = []
for vid in data_list:
data_group = data_dictionary[vid.lower()]
data_x += data_group["features"].tolist()
data_y += data_group["labels"]
frame_infos += data_group["frame_infos"].tolist()
return data_x, data_y, frame_infos