-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquaternion.cpp
146 lines (110 loc) · 3 KB
/
quaternion.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/***********************************************
* $author: javery
* $date : 08 Feb 03
* $descp : fun with quaternions.
* $path : C:\Program Files\Microsoft Visual Studio\MyProjects\KaosDemoEngine\quaternion.h
* $ver : 0.0.0
***********************************************/
#include "quaternion.h"
void MTQ_Init( Quaternion_t* pq , float s , float i , float j , float k )
{
pq->s = s;
pq->v.i = i;
pq->v.j = j;
pq->v.k = k;
}
void MTQ_Init( Quaternion_t* pq , float s , Vect3_t v3 )
{
pq->s = s;
pq->v.i = v3.xComponent;
pq->v.j = v3.yComponent;
pq->v.k = v3.zComponent;
}
Vect3_t MTQ_Convert( Quaternion_t* pq )
{
Vect3_t rv;
MTV_Init( rv , pq->v.i , pq->v.j , pq->v.k );
return rv;
}
Quaternion_t MTQ_Conjugate( Quaternion_t* pq )
{
Q rQ;
MTQ_Init( &rQ , pq->s , -pq->v.i , -pq->v.j , -pq->v.k );
return rQ;
}
Quaternion_t MTQ_Add( Quaternion_t* pq1 , Quaternion_t* pq2 )
{
Q rQ;
MTQ_Init( &rQ ,
pq1->s + pq2->s ,
pq1->v.i + pq2->v.i ,
pq1->v.j + pq2->v.j ,
pq1->v.k + pq2->v.k
);
return rQ;
}
Quaternion_t MTQ_Multiply( Quaternion_t* pq1 , Quaternion_t* pq2 )
{
/* Q rQ;
Vect3_t work1 = MTQ_Convert( pq1 ) ,
work2 = MTQ_Convert( pq2 ) ,
term1 = MTV_Scale( work1 , pq2->s ) ,
term2 = MTV_Scale( work2 , pq1->s ) ,
term3 = MTV_CrossProd( work1 , work2 ), // making the quaternion noncommutitve.
sum;
MTV_Init( sum ,
term1.xComponent + term2.xComponent + term3.xComponent ,
term1.yComponent + term2.yComponent + term3.yComponent ,
term1.zComponent + term2.zComponent + term3.zComponent
);
MTQ_Init( &rQ ,
(pq1->s*pq2->s)-(MTV_DotProd( work1 , work2 )) ,
sum
);
return rQ;*/
/*
w = w1w2 - x1x2 - y1y2 - z1z2
x = w1x2 + x1w2 + y1z2 - z1y2
y = w1y2 + y1w2 + z1x2 - x1z2
z = w1z2 + z1w2 + x1y2 - y1x2
*/
float s,i,j,k;
Q product;
s = ( pq1->s * pq2->s ) - ( pq1->v.i * pq2->v.i ) - ( pq1->v.j * pq2->v.j ) - ( pq1->v.k * pq2->v.k );
i = ( pq1->s * pq2->v.i ) + ( pq1->v.i * pq2->s ) + ( pq1->v.j * pq2->v.k ) - ( pq1->v.k * pq2->v.j );
j = ( pq1->s * pq2->v.j ) + ( pq1->v.j * pq2->s ) + ( pq1->v.k * pq2->v.i ) - ( pq1->v.i * pq2->v.k );
k = ( pq1->s * pq2->v.k ) + ( pq1->v.k * pq2->s ) + ( pq1->v.i * pq2->v.j ) - ( pq1->v.j * pq2->v.i );
MTQ_Init( &product , s , i , j , k );
return product;
}
float MTQ_Lenght( Quaternion_t* pq )
{
Q derQ = MTQ_Conjugate( pq ),
prod = MTQ_Multiply( pq , &derQ );
return prod.s;
}
void MTQ_Clear( Quaternion_t* pq )
{
pq->s = 0;
pq->v.i = pq->v.j = pq->v.k = 0;
}
void MTQ_Negate( Quaternion_t* pq )
{
pq->s = -pq->s;
pq->v.i = -pq->v.i;
pq->v.j = -pq->v.j;
pq->v.k = -pq->v.k;
}
void MTQ_Normalize( Quaternion_t* pq )
{
/* Vect3_t work = MTQ_Convert( pq );
MTV_Normalize( work );
pq->v.i = work.xComponent;
pq->v.j = work.yComponent;
pq->v.k = work.zComponent;*/
float lenght = MTQ_Lenght( pq );
pq->s /= lenght;
pq->v.i /= lenght;
pq->v.j /= lenght;
pq->v.k /= lenght;
}