forked from xlvector/hector
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcovariance_function.go
57 lines (50 loc) · 1.41 KB
/
covariance_function.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
package gp
import (
"math"
"hector/core"
)
type CovFunc func(*core.Vector, *core.Vector)float64
func CovMatrix(X []*core.RealSample, cov_func CovFunc) (*core.Matrix) {
l := int64(len(X))
ret := core.NewMatrix()
for i := int64(0); i < l; i++ {
for j := i; j < l; j++ {
c := cov_func(X[i].GetFeatureVector(), X[j].GetFeatureVector())
ret.SetValue(i, j, c)
ret.SetValue(j, i, c)
}
}
return ret
}
func CovVector(X []*core.RealSample, y *core.RealSample, cov_func CovFunc) (*core.Vector) {
l := int64(len(X))
ret := core.NewVector()
for i := int64(0); i < l; i++ {
ret.SetValue(i, cov_func(X[i].GetFeatureVector(), y.GetFeatureVector()))
}
return ret
}
/*
Squared error covariance function
ARD = auto relevance detection, and here indicates there is a scaling/radius factor per dimension
*/
type CovSEARD struct {
Radiuses *core.Vector // dim -> radius
Amp float64
}
func (cov_func *CovSEARD) Init(radiuses *core.Vector, amp float64) {
cov_func.Radiuses = radiuses
cov_func.Amp = amp
}
func (cov_func *CovSEARD) Cov(x1 *core.Vector, x2 *core.Vector) float64 {
ret := 0.0
tmp := 0.0
for key, r := range cov_func.Radiuses.Data {
v1 := x1.GetValue(key)
v2 := x2.GetValue(key)
tmp = (v1-v2)/r
ret += tmp * tmp
}
ret = cov_func.Amp * math.Exp(-ret)
return ret
}