Skip to content

Commit ebf663d

Browse files
committed
Add set for low-rank constrained SDP
1 parent d48ac54 commit ebf663d

File tree

6 files changed

+89
-2
lines changed

6 files changed

+89
-2
lines changed

docs/src/background/duality.md

+3-1
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,9 @@ and similarly, the dual is:
113113

114114
The scalar product is different from the canonical one for the sets
115115
[`PositiveSemidefiniteConeTriangle`](@ref), [`LogDetConeTriangle`](@ref),
116-
[`RootDetConeTriangle`](@ref).
116+
[`RootDetConeTriangle`](@ref),
117+
[`FrobeniusProductPostiviveSemidefiniteConeTriangle`](@ref) and
118+
[`LinearMatrixInequalityConeTriangle`](@ref).
117119

118120
If the set ``C_i`` of the section [Duality](@ref) is one of these three cones,
119121
then the rows of the matrix ``A_i`` corresponding to off-diagonal entries are

docs/src/manual/standard_form.md

+2-1
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,8 @@ The matrix-valued set types implemented in MathOptInterface.jl are:
9898
| [`NormSpectralCone(r, c)`](@ref MathOptInterface.NormSpectralCone) | ``\{ (t, X) \in \mathbb{R}^{1 + r \times c} : t \ge \sigma_1(X), X \mbox{ is a } r\times c\mbox{ matrix} \}``
9999
| [`NormNuclearCone(r, c)`](@ref MathOptInterface.NormNuclearCone) | ``\{ (t, X) \in \mathbb{R}^{1 + r \times c} : t \ge \sum_i \sigma_i(X), X \mbox{ is a } r\times c\mbox{ matrix} \}`` |
100100
| [`HermitianPositiveSemidefiniteConeTriangle(d)`](@ref MathOptInterface.HermitianPositiveSemidefiniteConeTriangle) | The cone of Hermitian positive semidefinite matrices, with
101-
`side_dimension` rows and columns. |
101+
| [`FrobeniusProductPostiviveSemidefiniteConeTriangle(d, A)`](@ref MathOptInterface.FrobeniusProductPostiviveSemidefiniteConeTriangle) | The cone of positive semidefinite matrices, with `side_dimension` rows and columns and their Frobenius inner product with the matrices in `A`. |
102+
| [`LinearMatrixInequalityConeTriangle(d, A)`](@ref MathOptInterface.LinearMatrixInequalityConeTriangle) | The cone of vector `y` and symmetric `C`, with `side_dimension` rows and columns such that ``\sum_i y_i A_i + C`` is positive semidefinite. |
102103

103104
Some of these cones can take two forms: `XXXConeTriangle` and `XXXConeSquare`.
104105

docs/src/reference/standard_form.md

+2
Original file line numberDiff line numberDiff line change
@@ -152,4 +152,6 @@ LogDetConeTriangle
152152
LogDetConeSquare
153153
RootDetConeTriangle
154154
RootDetConeSquare
155+
FrobeniusProductPostiviveSemidefiniteConeTriangle
156+
LinearMatrixInequalityConeTriangle
155157
```

src/Utilities/model.jl

+2
Original file line numberDiff line numberDiff line change
@@ -795,6 +795,8 @@ const LessThanIndicatorZero{T} =
795795
MOI.ScaledPositiveSemidefiniteConeTriangle,
796796
MOI.RootDetConeTriangle,
797797
MOI.RootDetConeSquare,
798+
MOI.FrobeniusProductPostiviveSemidefiniteConeTriangle,
799+
MOI.LinearMatrixInequalityConeTriangle,
798800
MOI.LogDetConeTriangle,
799801
MOI.LogDetConeSquare,
800802
MOI.AllDifferent,

src/Utilities/results.jl

+25
Original file line numberDiff line numberDiff line change
@@ -575,6 +575,19 @@ function set_dot(
575575
return x[1] * y[1] + x[2] * y[2] + triangle_dot(x, y, set.side_dimension, 2)
576576
end
577577

578+
function set_dot(
579+
x::AbstractVector,
580+
y::AbstractVector,
581+
set::Union{
582+
MOI.FrobeniusProductPostiviveSemidefiniteConeTriangle,
583+
MOI.LinearMatrixInequalityConeTriangle,
584+
},
585+
)
586+
m = length(set.matrices)
587+
return LinearAlgebra.dot(view(x, 1:m), view(y, 1:m)) +
588+
triangle_dot(x, y, set.side_dimension, m)
589+
end
590+
578591
"""
579592
dot_coefficients(a::AbstractVector, set::AbstractVectorSet)
580593
@@ -633,3 +646,15 @@ function dot_coefficients(a::AbstractVector, set::MOI.LogDetConeTriangle)
633646
triangle_coefficients!(b, set.side_dimension, 2)
634647
return b
635648
end
649+
650+
function set_dot(
651+
a::AbstractVector,
652+
set::Union{
653+
MOI.FrobeniusProductPostiviveSemidefiniteConeTriangle,
654+
MOI.LinearMatrixInequalityConeTriangle,
655+
},
656+
)
657+
b = copy(a)
658+
triangle_coefficients!(b, set.side_dimension, length(set.matrices))
659+
return b
660+
end

src/sets.jl

+55
Original file line numberDiff line numberDiff line change
@@ -1735,6 +1735,61 @@ function triangular_form(set::RootDetConeSquare)
17351735
return RootDetConeTriangle(set.side_dimension)
17361736
end
17371737

1738+
"""
1739+
FrobeniusProductPostiviveSemidefiniteConeTriangle{M}(side_dimension::Int, matrices::Vector{M})
1740+
1741+
Given `m` symmetric matrices `A_1`, ..., `A_m` given in `matrices`, the frobenius inner
1742+
product of positive semidefinite matrices is the convex cone:
1743+
``\\{ ((\\langle A_1, X \\rangle, ..., \\langle A_m, X \\rangle, X) \\in \\mathbb{R}^{m + d(d+1)/2} : X \\text{ postive semidefinite} \\}``,
1744+
where the matrix `X` is represented in the same symmetric packed format as in
1745+
the [`PositiveSemidefiniteConeTriangle`](@ref).
1746+
"""
1747+
struct FrobeniusProductPostiviveSemidefiniteConeTriangle{M} <: AbstractVectorSet
1748+
side_dimension::Int
1749+
matrices::Vector{M}
1750+
end
1751+
1752+
function dimension(s::FrobeniusProductPostiviveSemidefiniteConeTriangle)
1753+
return length(s.matrices) + s.side_dimension^2
1754+
end
1755+
1756+
function dual_set(s::FrobeniusProductPostiviveSemidefiniteConeTriangle)
1757+
return LinearMatrixInequalityConeTriangle(s.side_dimension, s.matrices)
1758+
end
1759+
1760+
function dual_set_type(
1761+
::Type{FrobeniusProductPostiviveSemidefiniteConeTriangle{M}},
1762+
) where {M}
1763+
return LinearMatrixInequalityConeTriangle
1764+
end
1765+
1766+
"""
1767+
LinearMatrixInequalityConeTriangle{M}(side_dimension::Int, matrices::Vector{M})
1768+
1769+
Given `m` symmetric matrices `A_1`, ..., `A_m` given in `matrices`, the linear
1770+
matrix inequality cone is the convex cone:
1771+
``\\{ ((y, C) \\in \\mathbb{R}^{m + d(d+1)/2} : \\sum_{i=1}^m y_i A_i + C \\text{ postive semidefinite} \\}``,
1772+
where the matrix `C` is represented in the same symmetric packed format as in
1773+
the [`PositiveSemidefiniteConeTriangle`](@ref).
1774+
"""
1775+
struct LinearMatrixInequalityConeTriangle{M} <: AbstractVectorSet
1776+
side_dimension::Int
1777+
matrices::Vector{M}
1778+
end
1779+
1780+
dimension(s::LinearMatrixInequalityConeTriangle) = length(s.matrices) + s.side_dimension^2
1781+
1782+
function dual_set(s::LinearMatrixInequalityConeTriangle)
1783+
return FrobeniusProductPostiviveSemidefiniteConeTriangle(
1784+
s.side_dimension,
1785+
s.matrices,
1786+
)
1787+
end
1788+
1789+
function dual_set_type(::Type{LinearMatrixInequalityConeTriangle{M}}) where {M}
1790+
return FrobeniusProductPostiviveSemidefiniteConeTriangle
1791+
end
1792+
17381793
"""
17391794
SOS1{T<:Real}(weights::Vector{T})
17401795

0 commit comments

Comments
 (0)