-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathHierarchical.jl
130 lines (111 loc) · 4.47 KB
/
Hierarchical.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright 2019, Oscar Dowson and contributors
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v.2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at http://mozilla.org/MPL/2.0/.
"""
Hierarchical()
`Hierarchical` implements an algorithm that returns a single point via an
iterative scheme.
First, it partitions the objectives into sets according to
`MOA.ObjectivePriority`. Then, in order of decreasing priority, it formulates a
single-objective problem by scalarizing all of the objectives with the same
priority using `MOA.ObjectiveWeight`. Next, it constrains those objectives such
that they can be at most `MOA.ObjectiveRelativeTolerance` worse than optimal in
future solves. Finally, it steps to the next set of prioritized objectives.
The solution is a single point that trades off the various objectives. It does
not record the partial solutions that were found along the way.
## Supported optimizer attributes
* `MOA.ObjectivePriority`
* `MOA.ObjectiveWeight`
* `MOA.ObjectiveRelativeTolerance`
"""
mutable struct Hierarchical <: AbstractAlgorithm
priorities::Vector{Int}
weights::Vector{Float64}
rtol::Vector{Float64}
Hierarchical() = new(Int[], Float64[], Float64[])
end
MOI.supports(::Hierarchical, ::ObjectivePriority) = true
function MOI.get(alg::Hierarchical, attr::ObjectivePriority)
return get(alg.priorities, attr.index, default(alg, attr))
end
function _append_default(
alg::Hierarchical,
attr::AbstractAlgorithmAttribute,
x::Vector,
)
for _ in (1+length(x)):attr.index
push!(x, default(alg, attr))
end
return
end
function MOI.set(alg::Hierarchical, attr::ObjectivePriority, value)
_append_default(alg, attr, alg.priorities)
alg.priorities[attr.index] = value
return
end
MOI.supports(::Hierarchical, ::ObjectiveWeight) = true
function MOI.get(alg::Hierarchical, attr::ObjectiveWeight)
return get(alg.weights, attr.index, default(alg, attr))
end
function MOI.set(alg::Hierarchical, attr::ObjectiveWeight, value)
_append_default(alg, attr, alg.weights)
alg.weights[attr.index] = value
return
end
MOI.supports(::Hierarchical, ::ObjectiveRelativeTolerance) = true
function MOI.get(alg::Hierarchical, attr::ObjectiveRelativeTolerance)
return get(alg.rtol, attr.index, default(alg, attr))
end
function MOI.set(alg::Hierarchical, attr::ObjectiveRelativeTolerance, value)
_append_default(alg, attr, alg.rtol)
alg.rtol[attr.index] = value
return
end
function _sorted_priorities(priorities::Vector{Int})
unique_priorities = sort(unique(priorities); rev = true)
return [findall(isequal(u), priorities) for u in unique_priorities]
end
function optimize_multiobjective!(algorithm::Hierarchical, model::Optimizer)
objectives = MOI.Utilities.eachscalar(model.f)
N = length(objectives)
variables = MOI.get(model.inner, MOI.ListOfVariableIndices())
# Find list of objectives with same priority
constraints = Any[]
priorities = [MOI.get(algorithm, ObjectivePriority(i)) for i in 1:N]
weights = [MOI.get(algorithm, ObjectiveWeight(i)) for i in 1:N]
objective_subsets = _sorted_priorities(priorities)
for (round, indices) in enumerate(objective_subsets)
# Solve weighted sum
new_vector_f = objectives[indices]
new_f = _scalarise(new_vector_f, weights[indices])
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(new_f)}(), new_f)
MOI.optimize!(model.inner)
status = MOI.get(model.inner, MOI.TerminationStatus())
if !_is_scalar_status_optimal(status)
return status, nothing
end
if round == length(objective_subsets)
break
end
# Add tolerance constraints
X, Y = _compute_point(model, variables, new_vector_f)
sense = MOI.get(model.inner, MOI.ObjectiveSense())
for (i, fi) in enumerate(MOI.Utilities.eachscalar(new_vector_f))
rtol = MOI.get(algorithm, ObjectiveRelativeTolerance(i))
set = if sense == MOI.MIN_SENSE
MOI.LessThan(Y[i] + rtol * abs(Y[i]))
else
MOI.GreaterThan(Y[i] - rtol * abs(Y[i]))
end
ci = MOI.Utilities.normalize_and_add_constraint(model, fi, set)
push!(constraints, ci)
end
end
X, Y = _compute_point(model, variables, model.f)
# Remove tolerance constraints
for c in constraints
MOI.delete(model, c)
end
return MOI.OPTIMAL, [SolutionPoint(X, Y)]
end