-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNetwork.cpp
561 lines (497 loc) · 18.5 KB
/
NeuralNetwork.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
#include "NeuralNetwork.h"
#include "Process.h"
#include <math.h>
#include <cfloat>
#include <fstream>
void ANN::Init(const int h_layer_count, int* neuron_count, const int inputDim, const int numClass)
{
this->layer = new Layer[h_layer_count + 1];// hidden layer count + output layer
//Hidden layers
for (int i = 0; i < h_layer_count; i++)
{
this->layer[i].neuron = new Neuron[neuron_count[i]];
this->layer[i].neuron_size = neuron_count[i];
}
//Output layer initializin according to Class numbers
this->layer[h_layer_count].neuron = new Neuron[numClass];
this->layer[h_layer_count].neuron_size = numClass;
//---Weights initializing-----input--hidden--output
//input layer's weights
this->weights = new float* [h_layer_count + 1];
this->bias = new float* [h_layer_count + 1]; // (+1 for input layer bias)
this->weights[0] = init_array_random(inputDim * neuron_count[0]); // 2D vector in 1D array
this->bias[0] = init_array_random(neuron_count[0]); // 1D vector
//hidden layer's weigths
for (int i = 0; i < h_layer_count - 1; i++)
{
this->weights[i + 1] = init_array_random(neuron_count[i] * neuron_count[i + 1]);
this->bias[i + 1] = init_array_random(neuron_count[i + 1]);
}
//output layer's weights
this->weights[h_layer_count] = init_array_random(neuron_count[h_layer_count - 1] * numClass);
this->bias[h_layer_count] = init_array_random(numClass);
this->LAYERCOUNT = h_layer_count;
this->INPUTDIM = inputDim;
this->NUMCLASS = numClass;
}
int ANN::TrainSGD(float* data, float* tag, int numSample)
{
float desired, total_error = 0, error_rmse = 0 , error_mse;
this->Error_arr = new double[CYCLE_MAX];
float** deltaSignal = new float* [this->LAYERCOUNT + 1];
for (int l = 0; l < this->LAYERCOUNT + 1; l++)
deltaSignal[l] = new float[layer[l].neuron_size];
for (int cycle = 0; cycle < CYCLE_MAX; cycle++)
{
total_error = 0;
for (int sample = 0; sample < numSample; sample++)
{
//Input Layer Feed Forward
for (int j = 0; j < layer[0].neuron_size; j++)
layer[0].neuron[j].net = 0;
for (int j = 0; j < layer[0].neuron_size; j++)
{
for (int i = 0; i < this->INPUTDIM; i++)
{
layer[0].neuron[j].net += data[(sample * this->INPUTDIM) + i] * this->weights[0][(j * this->INPUTDIM) + i];
}//feedforward matrix-vector multiplication
layer[0].neuron[j].net += bias[0][j]; // BIAS
layer[0].neuron[j].output = (float)tanh(layer[0].neuron[j].net);// ACTIVATION
}//Neuron Loop
//Hidden and Output Layer Feed Forward
for (int l = 1; l < this->LAYERCOUNT + 1; l++)
{
for (int j = 0; j < layer[l].neuron_size; j++)
layer[l].neuron[j].net = 0;
for (int j = 0; j < layer[l].neuron_size; j++)
{
for (int i = 0; i < layer[l - 1].neuron_size; i++)
{
layer[l].neuron[j].net += layer[l - 1].neuron[i].output * this->weights[l][j * (layer[l - 1].neuron_size) + i];
}// matrix-vector multiplication
layer[l].neuron[j].net += bias[l][j]; // BIAS
layer[l].neuron[j].output = (float)tanh(layer[l].neuron[j].net); // ACTIVATION
if (l == LAYERCOUNT)// IF OUTPUT LAYER
{
if (j == tag[sample])
desired = +1;
else
desired = -1;
// --------OUTPUT LAYER FEED BACK-------
float f_deriv = 1 - pow(layer[l].neuron[j].output, 2);
deltaSignal[l][j] = (desired - layer[l].neuron[j].output) * f_deriv;
for (int i = 0; i < layer[l - 1].neuron_size; i++)
{
this->weights[l][j * (layer[l - 1].neuron_size) + i] += LEARNING_RATE * deltaSignal[l][j] * layer[l - 1].neuron[i].output;
}
this->bias[l][j] += LEARNING_RATE * deltaSignal[l][j];
//--------TOTAL ERROR-----------
total_error += pow((desired - layer[l].neuron[j].output), 2);
}// FEED FORWARD ---- OUTPUT LAYER FEEDBACK ----- TOTAL ERROR----
}//Neuron Loop
}//Hidden layer Loop
//------------ HIDDEN LAYER FEED BACK-------
for (int l = this->LAYERCOUNT - 1; l > 0; l--)
{
for (int j = 0; j < layer[l].neuron_size; j++) // HIDDEN LAYER WEIGHT UPDATING
{
float f_deriv = 1 - pow(layer[l].neuron[j].output, 2);
float sum = 0;
for (int k = 0; k < layer[l + 1].neuron_size; k++) // ALREADY WEIGHT UPDATED LAYER (SIGNAL)
{
sum += deltaSignal[l + 1][k] * this->weights[l + 1][k * layer[l].neuron_size + j];
}
deltaSignal[l][j] = f_deriv * sum;
for (int i = 0; i < layer[l - 1].neuron_size; i++)// WEIGHT UPTADE -- (INPUT SIGNAL)
{
this->weights[l][j * layer[l - 1].neuron_size + i] += LEARNING_RATE * deltaSignal[l][j] * layer[l - 1].neuron[i].output;
}
this->bias[l][j] += LEARNING_RATE * deltaSignal[l][j];
}// NEURON LOOP
}//LAYER LOOP (HIDDEN) ---- FEED BACK
//INPUT LAYER FEED BACK
for (int j = 0; j < layer[0].neuron_size; j++) // INPUT LAYER WEIGHT UPDATING
{
float f_deriv = 1 - pow(layer[0].neuron[j].output, 2);
float sum = 0;
for (int k = 0; k < layer[1].neuron_size; k++) // SIGNAL FROM ALREADY WEIGHT UPDATED LAYERS
{
sum += deltaSignal[1][k] * this->weights[1][k * layer[0].neuron_size + j];
}
deltaSignal[0][j] = f_deriv * sum;
for (int i = 0; i < this->INPUTDIM; i++)// WEIGHT UPTADE -- INPUT SIGNAL
{
this->weights[0][j * this->INPUTDIM + i] += LEARNING_RATE * deltaSignal[0][j] * data[(sample * this->INPUTDIM) + i];
}
bias[0][j] += LEARNING_RATE * deltaSignal[0][j];
}//NEURON LOOP (INPUT LAYER) ---- FEED BACK
}//Sample Loop
//error_mse = (total_error) / (numSample * this->NUMCLASS);
//Root-Mean-Square Normalized Error(RMSE)
error_rmse = sqrt(total_error / (numSample * this->NUMCLASS));
this->Error_arr[cycle] = (double)error_rmse;
if (error_rmse < EMAX)
{
for (int l = 0; l < this->LAYERCOUNT + 1; l++)
{
delete[] deltaSignal[l];
}
delete[] deltaSignal;
return cycle;
}
}
return 0;
}
int ANN::TrainSGDwMoment(float* data, float* tag, int numSample)
{
float desired, total_error = 0, error_rmse = 0, error_mse = 0;
this->Error_arr = new double[CYCLE_MAX];
float** deltaSignal = new float* [this->LAYERCOUNT + 1];
float*** moment = new float** [this->LAYERCOUNT + 1]; //layer pointer initializing
float*** moment_bias = new float** [this->LAYERCOUNT + 1];
for (int l = 0; l < this->LAYERCOUNT + 1; l++)
deltaSignal[l] = new float[layer[l].neuron_size];
//input layers moment memory;
int input_size = this->INPUTDIM * layer[0].neuron_size;
moment[0] = new float* [input_size];
for (int i = 0; i < input_size; i++)
moment[0][i] = init_array_zero(T_SIZE);
// moment[layer][inputneuron*outputneuron][t,t-1,t-2,t-3];
//hidden and output layer weight storage for momentum
for (int l = 1; l < this->LAYERCOUNT + 1; l++)
{
int size = layer[l - 1].neuron_size * layer[l].neuron_size; //weightsize
moment[l] = new float* [size];
for (int i = 0; i < size; i++)
moment[l][i] = init_array_zero(T_SIZE);
}
for (int l = 0; l < this->LAYERCOUNT + 1; l++)
{
int size = layer[l].neuron_size; //
moment_bias[l] = new float* [size];
for (int i = 0; i < size; i++)
moment_bias[l][i] = init_array_zero(T_SIZE);
}
for (int cycle = 0; cycle < CYCLE_MAX; cycle++)
{
total_error = 0;
for (int sample = 0; sample < numSample; sample++)
{
//Input Layer Feed Forward
for (int j = 0; j < layer[0].neuron_size; j++)
layer[0].neuron[j].net = 0;
for (int j = 0; j < layer[0].neuron_size; j++)
{
for (int i = 0; i < this->INPUTDIM; i++)
{
layer[0].neuron[j].net += data[(sample * this->INPUTDIM) + i] * this->weights[0][(j * this->INPUTDIM) + i];
}//feedforward matrix-vector multiplication
layer[0].neuron[j].net += bias[0][j]; // BIAS
layer[0].neuron[j].output = (float)tanh(layer[0].neuron[j].net);// ACTIVATION
}//Neuron Loop
//Hidden and Output Layer Feed Forward
for (int l = 1; l < this->LAYERCOUNT + 1; l++)
{
for (int j = 0; j < layer[l].neuron_size; j++)
layer[l].neuron[j].net = 0;
for (int j = 0; j < layer[l].neuron_size; j++)
{
for (int i = 0; i < layer[l - 1].neuron_size; i++)
{
layer[l].neuron[j].net += layer[l - 1].neuron[i].output * this->weights[l][j * (layer[l - 1].neuron_size) + i];
}// matrix-vector multiplication
layer[l].neuron[j].net += bias[l][j]; // BIAS
layer[l].neuron[j].output = (float)tanh(layer[l].neuron[j].net); // ACTIVATION
if (l == LAYERCOUNT)// IF OUTPUT LAYER
{
if (j == tag[sample])
desired = +1;
else
desired = -1;
// --------OUTPUT LAYER FEED BACK-------
float f_deriv = 1 - pow(layer[l].neuron[j].output, 2);
deltaSignal[l][j] = (desired - layer[l].neuron[j].output) * f_deriv;
for (int i = 0; i < layer[l - 1].neuron_size; i++)
{
int w_index = j * (layer[l - 1].neuron_size) + i;
float delta_w = LEARNING_RATE * deltaSignal[l][j] * layer[l - 1].neuron[i].output;
float MOMENT = 0;
for (int t = 0; t < T_SIZE - 1; t++)
MOMENT += MOMENT_RATE * moment[l][w_index][t];
this->weights[l][j * (layer[l - 1].neuron_size) + i] += delta_w + MOMENT;
push_back(moment, l, w_index, T_SIZE, delta_w);
}
float delta_b = LEARNING_RATE * deltaSignal[l][j];
float MOMENT = 0;
for (int t = 0; t < T_SIZE - 1; t++)
MOMENT += MOMENT_RATE * moment_bias[l][j][t];
this->bias[l][j] += delta_b + MOMENT;
push_back(moment_bias, l, j, T_SIZE, delta_b);
//--------TOTAL ERROR-----------
total_error += pow((desired - layer[l].neuron[j].output), 2);
}// FEED FORWARD ---- OUTPUT LAYER FEEDBACK ----- TOTAL ERROR----
}//Neuron Loop
}//Hidden layer Loop
//------------ HIDDEN LAYER FEED BACK-------
for (int l = this->LAYERCOUNT - 1; l > 0; l--)
{
for (int j = 0; j < layer[l].neuron_size; j++) // CURRENT HIDDEN LAYER WEIGHT UPDATING
{
float f_deriv = 1 - pow(layer[l].neuron[j].output, 2);
float sum = 0;
for (int k = 0; k < layer[l + 1].neuron_size; k++) // ALREADY WEIGHT UPDATED LAYER (OUTPUT - SIGNAL FROM BACK)
{
sum += deltaSignal[l + 1][k] * this->weights[l + 1][k * layer[l].neuron_size + j];
}
deltaSignal[l][j] = f_deriv * sum;
for (int i = 0; i < layer[l - 1].neuron_size; i++)// WEIGHT UPTADE -- (INPUT - SIGNAL FROM FRONT)
{
float delta_w = LEARNING_RATE * deltaSignal[l][j] * layer[l - 1].neuron[i].output;
int w_index = j * layer[l - 1].neuron_size + i;
float MOMENT = 0;
for (int t = 0; t < T_SIZE - 1; t++)
MOMENT += MOMENT_RATE * moment[l][w_index][t];
this->weights[l][j * layer[l - 1].neuron_size + i] += delta_w + MOMENT;
push_back(moment, l, w_index, T_SIZE, delta_w);
}
float delta_b = LEARNING_RATE * deltaSignal[l][j];
float MOMENT = 0;
for (int t = 0; t < T_SIZE - 1; t++)
MOMENT += MOMENT_RATE * moment_bias[l][j][t];
this->bias[l][j] += delta_b + MOMENT;
push_back(moment_bias, l, j, T_SIZE, delta_b);
}// NEURON LOOP
}//LAYER LOOP (HIDDEN) ---- FEED BACK
//INPUT LAYER FEED BACK
for (int j = 0; j < layer[0].neuron_size; j++) // INPUT LAYER WEIGHT UPDATING
{
float f_deriv = 1 - pow(layer[0].neuron[j].output, 2);
float sum = 0;
for (int k = 0; k < layer[1].neuron_size; k++) // SIGNAL FROM ALREADY WEIGHT UPDATED LAYERS
{
sum += deltaSignal[1][k] * this->weights[1][k * layer[0].neuron_size + j];
}
deltaSignal[0][j] = f_deriv * sum;
for (int i = 0; i < this->INPUTDIM; i++)// WEIGHT UPTADE -- INPUT SIGNAL
{
float delta_w = LEARNING_RATE * deltaSignal[0][j] * data[(sample * this->INPUTDIM) + i];
int w_index = j * this->INPUTDIM + i;
float MOMENT = 0;
for (int t = 0; t < T_SIZE; t++)
MOMENT += MOMENT_RATE * moment[0][w_index][t];
this->weights[0][j * this->INPUTDIM + i] += delta_w + MOMENT;
push_back(moment, 0, w_index, T_SIZE, delta_w);
}
float delta_b = LEARNING_RATE * deltaSignal[0][j];
float MOMENT = 0;
for (int t = 0; t < T_SIZE - 1; t++)
MOMENT += MOMENT_RATE * moment_bias[0][j][t];
this->bias[0][j] += delta_b + MOMENT;
push_back(moment_bias, 0, j, T_SIZE, delta_b);
}//NEURON LOOP (INPUT LAYER) ---- FEED BACK
}//Sample Loop
//Root-Mean-Square Normalized Error(RMSE)
//error_mse = (total_error) / (numSample * this->NUMCLASS);
error_rmse = sqrt(total_error / (numSample * this->NUMCLASS));
this->Error_arr[cycle] = (double)error_rmse;
if (error_rmse < EMAX)
{
for (int l = 1; l < this->LAYERCOUNT + 1; l++)
{
int size = layer[l - 1].neuron_size * layer[l].neuron_size; //weightsize
for (int i = 0; i < size; i++)
delete[] moment[l][i];
}
for (int i = 0; i < input_size; i++)
delete[] moment[0][i];
for (int l = 0; l < this->LAYERCOUNT + 1; l++) {
int size = layer[l].neuron_size;
for (int i = 0; i < size; i++)
delete[] moment_bias[l][i];
delete[] deltaSignal[l];
delete[] moment[l];
delete[] moment_bias[l];
}
delete[] moment_bias;
delete[] moment;
delete[] deltaSignal;
return cycle;
}
}
return 0;
}
void ANN::Test(float* testData, int* tag, int DATASIZE)
{
int index = 0;
for (int sample = 0; sample < DATASIZE; sample++)
{
//Input Layer Feed Forward
for (int j = 0; j < layer[0].neuron_size; j++)
layer[0].neuron[j].net = 0;
for (int j = 0; j < layer[0].neuron_size; j++)
{
for (int i = 0; i < this->INPUTDIM; i++)
{
layer[0].neuron[j].net += testData[(sample * this->INPUTDIM) + i] * this->weights[0][(j * this->INPUTDIM) + i];
}//feedforward matrix-vector multiplication
layer[0].neuron[j].net += bias[0][j]; // BIAS
layer[0].neuron[j].output = (float)tanh(layer[0].neuron[j].net);// ACTIVATION
}//Neuron Loop
//Hidden and Output Layer Feed Forward
for (int l = 1; l < this->LAYERCOUNT + 1; l++)
{
for (int j = 0; j < layer[l].neuron_size; j++)
layer[l].neuron[j].net = 0;
for (int j = 0; j < layer[l].neuron_size; j++)
{
for (int i = 0; i < layer[l - 1].neuron_size; i++)
{
layer[l].neuron[j].net += layer[l - 1].neuron[i].output * this->weights[l][j * (layer[l - 1].neuron_size) + i];
}// matrix-vector multiplication
layer[l].neuron[j].net += bias[l][j]; // BIAS
layer[l].neuron[j].output = (float)tanh(layer[l].neuron[j].net); // ACTIVATION
}//Neuron Loop
}//Hidden layer Loop
float temp_max = -FLT_MAX;
int l = this->LAYERCOUNT; // OUTPUT LAYER LAYER
for (int j = 0; j < this->NUMCLASS; j++)
{
if (layer[l].neuron[j].output > temp_max)
{
temp_max = layer[l].neuron[j].output;
index = j;
}
}
tag[sample] = index;
}//Sample
}
void ANN::Test(float* testData, int& tag)
{
int index = 0;
//Input Layer Feed Forward
for (int j = 0; j < layer[0].neuron_size; j++)
layer[0].neuron[j].net = 0;
for (int j = 0; j < layer[0].neuron_size; j++)
{
for (int i = 0; i < this->INPUTDIM; i++)
{
layer[0].neuron[j].net += testData[i] * this->weights[0][(j * this->INPUTDIM) + i];
}//feedforward matrix-vector multiplication
layer[0].neuron[j].net += bias[0][j]; // BIAS
layer[0].neuron[j].output = (float)tanh(layer[0].neuron[j].net);// ACTIVATION
}//Neuron Loop
//Hidden and Output Layer Feed Forward
for (int l = 1; l < this->LAYERCOUNT + 1; l++)
{
for (int j = 0; j < layer[l].neuron_size; j++)
layer[l].neuron[j].net = 0;
for (int j = 0; j < layer[l].neuron_size; j++)
{
for (int i = 0; i < layer[l - 1].neuron_size; i++)
{
layer[l].neuron[j].net += layer[l - 1].neuron[i].output * this->weights[l][j * (layer[l - 1].neuron_size) + i];
}// matrix-vector multiplication
layer[l].neuron[j].net += bias[l][j]; // BIAS
layer[l].neuron[j].output = (float)tanh(layer[l].neuron[j].net); // ACTIVATION
}//Neuron Loop
}//Hidden layer Loop
float temp_max = -FLT_MAX;
int l = this->LAYERCOUNT; // OUTPUT LAYER LAYER
for (int j = 0; j < this->NUMCLASS; j++)
{
if (layer[l].neuron[j].output > temp_max)
{
temp_max = layer[l].neuron[j].output;
index = j;
}
}
tag = index;
}
void ANN::SaveWeights()
{
char** c = new char* [1];
// Veri Kümesi yazýlacak
c[0] = "Data/weights.txt";
std::ofstream file(c[0]);
if (!file.bad()) {
// #Layer Dimension numClass weights biases
file << this->LAYERCOUNT << " " << this->INPUTDIM << " " << this->NUMCLASS;
for (int i = 0; i < this->LAYERCOUNT; i++)
file << " " << layer[i].neuron_size;
file << std::endl;
int size = this->INPUTDIM * this->layer[0].neuron_size;
for (int k = 0; k < size; k++)
file << weights[0][k] << " ";
file << std::endl;
for (int k = 0; k < this->layer[0].neuron_size; k++)
file << bias[0][k] << " ";
file << std::endl;
for (int l = 0; l < this->LAYERCOUNT; l++) {
int size = this->layer[l].neuron_size * this->layer[l + 1].neuron_size;
for (int k = 0; k < size; k++)
file << weights[l + 1][k] << " ";
file << std::endl;
for (int k = 0; k < this->layer[l + 1].neuron_size; k++)
file << bias[l + 1][k] << " ";
file << std::endl;
}
file.close();
}
else System::Windows::Forms::MessageBox::Show("Save Weights icin dosya acilamadi");
delete[]c;
}
void ANN::InitFromFile()
{
char** c = new char* [1];
//Get weights
std::ifstream file;
int LayerNum, Dim, numclass;
int* neuronCount;
c[0] = "Data/weights.txt";
file.open(c[0]);
if (file.is_open()) {
file >> LayerNum >> Dim >> numclass;
neuronCount = new int[LayerNum];
for (int i = 0; i < LayerNum; i++)
file >> neuronCount[i];
this->Init(LayerNum, neuronCount, Dim, numclass);
int size = this->INPUTDIM * this->layer[0].neuron_size;
for (int k = 0; k < size; k++)
file >> weights[0][k];
for (int k = 0; k < this->layer[0].neuron_size; k++)
file >> bias[0][k];
for (int l = 0; l < this->LAYERCOUNT; l++) {
int size = this->layer[l].neuron_size * this->layer[l + 1].neuron_size;
for (int k = 0; k < size; k++)
file >> weights[l + 1][k];
for (int k = 0; k < this->layer[l + 1].neuron_size; k++)
file >> bias[l + 1][k];
}
file.close();
System::String^ StringArray;
for (int i = 0; i < LayerNum; i++)
StringArray += System::Convert::ToString(neuronCount[i]) + " ";
System::Windows::Forms::MessageBox::Show("Dosya basari ile okundu" + "\r\n"
+ "Dimension: " + System::Convert::ToString(Dim) + "\r\n"
+ "Hidden Layer: " + System::Convert::ToString(LayerNum) + "\r\n"
+ "Neurons: " + StringArray + "\r\n"
+ "numClass: " + System::Convert::ToString(numclass) + "\r\n"
);
}//file.is_open
else System::Windows::Forms::MessageBox::Show("Init weights icin dosya acilamadi");
}
ANN::ANN()
{
}
ANN::~ANN()
{
for (int i = 0; i < LAYERCOUNT + 1; i++)
{
delete[] weights[i];
delete[] bias[i];
}
delete[] weights;
delete[] bias;
delete[] layer;
delete[] Error_arr;
}