-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathminimum-cost-of-a-path-with-special-roads.cpp
108 lines (102 loc) · 3.97 KB
/
minimum-cost-of-a-path-with-special-roads.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// Time: O(n^2)
// Space: O(n^2)
// dijkstra's algorithm in a complete graph (no heap required)
class Solution {
public:
int minimumCost(vector<int>& start, vector<int>& target, vector<vector<int>>& specialRoads) {
static const int INF = numeric_limits<int>::max();
const auto& id = [&](const auto& x) {
return static_cast<int64_t>(x.first - 1) * target[1] + (x.second - 1);
};
const auto& x_y = [&](const auto& id) {
return pair(static_cast<int>(id / target[1] + 1), static_cast<int>(id % target[1] + 1));
};
const int64_t s = id(pair(start[0], start[1])), t = id(pair(target[0], target[1]));
unordered_map<int64_t, vector<pair<int64_t, int>>> adj;
adj[t];
for (const auto& s : specialRoads) {
const int x1 = s[0], y1 = s[1], x2 = s[2], y2 = s[3], c = s[4];
const int64_t u = id(pair(x1, y1)), v = id(pair(x2, y2));
adj[u].emplace_back(v, c);
}
unordered_map<int64_t, int> dist = {{s, 0}};
unordered_set<int64_t> lookup;
while (size(lookup) != size(dist)) {
pair<int, int64_t> mn = {INF, -1};
for (const auto& [u, d] : dist) {
if (!lookup.count(u)) {
mn = min(mn, pair(d, u));
}
}
const auto& [d, u] = mn;
lookup.emplace(u);
if (u == t) {
return d;
}
for (const auto& [v, c] : adj[u]) {
if (!dist.count(v) || dist[v] > d + c) {
dist[v] = d + c;
}
}
const auto& [x1, y1] = x_y(u);
for (const auto& [v, _] : adj) {
const auto& [x2, y2] = x_y(v);
if (!dist.count(v) || dist[v] > d + abs(x2 - x1) + abs(y2 - y1)) {
dist[v] = d + abs(x2 - x1) + abs(y2 - y1);
}
}
}
return -1;
}
};
// Time: O(n^2 * logn)
// Space: O(n^2)
// dijkstra's algorithm
class Solution2 {
public:
int minimumCost(vector<int>& start, vector<int>& target, vector<vector<int>>& specialRoads) {
static const int INF = numeric_limits<int>::max();
const auto& id = [&](const auto& x) {
return static_cast<int64_t>(x.first - 1) * target[1] + (x.second - 1);
};
const auto& x_y = [&](const auto& id) {
return pair(static_cast<int>(id / target[1] + 1), static_cast<int>(id % target[1] + 1));
};
const int64_t s = id(pair(start[0], start[1])), t = id(pair(target[0], target[1]));
unordered_map<int64_t, vector<pair<int64_t, int>>> adj;
adj[t];
unordered_set<int64_t> nodes = {s, t};
for (const auto& s : specialRoads) {
const int x1 = s[0], y1 = s[1], x2 = s[2], y2 = s[3], c = s[4];
const int64_t u = id(pair(x1, y1)), v = id(pair(x2, y2));
adj[u].emplace_back(v, c);
}
priority_queue<pair<int, int64_t>, vector<pair<int, int64_t>>, greater<pair<int, int64_t>>> min_heap;
min_heap.emplace(0, s);
unordered_map<int64_t, int> dist = {{s, 0}};
while (!empty(min_heap)) {
const auto [d, u] = min_heap.top(); min_heap.pop();
if (d > dist[u]) {
continue;
}
if (u == t) {
return d;
}
for (const auto& [v, c] : adj[u]) {
if (!dist.count(v) || dist[v] > d + c) {
dist[v] = d + c;
min_heap.emplace(dist[v], v);
}
}
const auto& [x1, y1] = x_y(u);
for (const auto& [v, _] : adj) {
const auto& [x2, y2] = x_y(v);
if (!dist.count(v) || dist[v] > d + abs(x2 - x1) + abs(y2 - y1)) {
dist[v] = d + abs(x2 - x1) + abs(y2 - y1);
min_heap.emplace(dist[v], v);
}
}
}
return -1;
}
};