-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathminimum-cost-to-convert-string-i.py
83 lines (75 loc) · 2.9 KB
/
minimum-cost-to-convert-string-i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Time: O(o + k * eloge + n), k = len(set(original)), e is the number of edges reachable from a given node u
# Space: O(o + k * v), v is the number of nodes reachable from a given node u
import heapq
# dijkstra's algorithm, memoization
class Solution(object):
def minimumCost(self, source, target, original, changed, cost):
"""
:type source: str
:type target: str
:type original: List[str]
:type changed: List[str]
:type cost: List[int]
:rtype: int
"""
INF = float("inf")
def dijkstra(start):
best = {start:0}
min_heap = [(0, start)]
while min_heap:
curr, u = heapq.heappop(min_heap)
if curr > best[u]:
continue
if u not in dist:
continue
for v, w in dist[u].iteritems():
if v in best and best[v] <= curr+w:
continue
best[v] = curr+w
heapq.heappush(min_heap, (best[v], v))
return best
memo = {}
def memoization(u, v):
if u not in memo:
memo[u] = dijkstra(u)
return memo[u][v] if v in memo[u] else INF
dist = {}
for i in xrange(len(original)):
u, v = ord(original[i])-ord('a'), ord(changed[i])-ord('a')
if u not in dist:
dist[u] = {v:INF}
if v not in dist[u]:
dist[u][v] = INF
dist[u][v] = min(dist[u][v], cost[i])
result = sum(memoization(ord(source[i])-ord('a'), ord(target[i])-ord('a')) for i in xrange(len(source)))
return result if result != INF else -1
# Time: O(o + 26^3 + n)
# Space: O(o + 26^2)
# Floyd-Warshall algorithm
class Solution2(object):
def minimumCost(self, source, target, original, changed, cost):
"""
:type source: str
:type target: str
:type original: List[str]
:type changed: List[str]
:type cost: List[int]
:rtype: int
"""
INF = float("inf")
def floydWarshall(dist):
for k in xrange(len(dist)):
for i in xrange(len(dist)):
if dist[i][k] == INF:
continue
for j in xrange(len(dist[i])):
if dist[k][j] == INF:
continue
dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j])
dist = [[0 if u == v else INF for v in xrange(26)] for u in xrange(26)]
for i in xrange(len(original)):
u, v = ord(original[i])-ord('a'), ord(changed[i])-ord('a')
dist[u][v] = min(dist[u][v], cost[i])
floydWarshall(dist)
result = sum(dist[ord(source[i])-ord('a')][ord(target[i])-ord('a')] for i in xrange(len(source)))
return result if result != INF else -1