-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathsubarrays-distinct-element-sum-of-squares-i.py
183 lines (166 loc) · 6.52 KB
/
subarrays-distinct-element-sum-of-squares-i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Time: O(nlogn)
# Space: O(n)
import collections
from sortedcontainers import SortedList
# bit, fenwick tree, sorted list, math
class Solution(object):
def sumCounts(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
MOD = 10**9+7
class BIT(object): # 0-indexed.
def __init__(self, n):
self.__bit = [0]*(n+1) # Extra one for dummy node.
def add(self, i, val):
i += 1 # Extra one for dummy node.
while i < len(self.__bit):
self.__bit[i] = (self.__bit[i]+val) % MOD
i += (i & -i)
def query(self, i):
i += 1 # Extra one for dummy node.
ret = 0
while i > 0:
ret = (ret+self.__bit[i]) % MOD
i -= (i & -i)
return ret
def update(accu, d):
i = sl.bisect_left(idxs[x][-1])
accu = (accu + d*(len(nums)*(2*len(sl)-1) - (2*i+1)*idxs[x][-1] - 2*(bit.query(len(nums)-1)-bit.query(idxs[x][-1])))) % MOD
bit.add(idxs[x][-1], d*idxs[x][-1])
return accu
idxs = collections.defaultdict(list)
for i in reversed(xrange(len(nums))):
idxs[nums[i]].append(i)
result = 0
sl = SortedList(idxs[x][-1] for x in idxs)
accu = (len(nums)*len(sl)**2) % MOD
for i, x in enumerate(sl):
accu = (accu-(2*i+1)*x) % MOD
bit = BIT(len(nums))
for x in sl:
bit.add(x, x)
for x in nums:
result = (result+accu) % MOD # accu = sum(count(i, k) for k in range(i, len(nums)))
accu = update(accu, -1)
del sl[0]
idxs[x].pop()
if not idxs[x]:
continue
sl.add(idxs[x][-1])
accu = update(accu, +1)
assert(accu == 0)
return result
# Time: O(nlogn)
# Space: O(n)
# dp, segment tree, math
class Solution2(object):
def sumCounts(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
MOD = 10**9+7
# Template:
# https://github.com/kamyu104/LeetCode-Solutions/blob/master/Python/longest-substring-of-one-repeating-character.py
class SegmentTree(object):
def __init__(self, N,
build_fn=None,
query_fn=lambda x, y: y if x is None else x if y is None else (x+y)%MOD,
update_fn=lambda x, y: y if x is None else (x+y)%MOD):
self.tree = [None]*(1<<((N-1).bit_length()+1))
self.base = len(self.tree)>>1
self.lazy = [None]*self.base
self.query_fn = query_fn
self.update_fn = update_fn
if build_fn is not None:
for i in xrange(self.base, self.base+N):
self.tree[i] = build_fn(i-self.base)
for i in reversed(xrange(1, self.base)):
self.tree[i] = query_fn(self.tree[i<<1], self.tree[(i<<1)+1])
self.count = [1]*len(self.tree) # added
for i in reversed(xrange(1, self.base)): # added
self.count[i] = self.count[i<<1] + self.count[(i<<1)+1]
def __apply(self, x, val):
self.tree[x] = self.update_fn(self.tree[x], val*self.count[x]) # modified
if x < self.base:
self.lazy[x] = self.update_fn(self.lazy[x], val)
def __push(self, x):
for h in reversed(xrange(1, x.bit_length())):
y = x>>h
if self.lazy[y] is not None:
self.__apply(y<<1, self.lazy[y])
self.__apply((y<<1)+1, self.lazy[y])
self.lazy[y] = None
def update(self, L, R, h): # Time: O(logN), Space: O(N)
def pull(x):
while x > 1:
x >>= 1
self.tree[x] = self.query_fn(self.tree[x<<1], self.tree[(x<<1)+1])
if self.lazy[x] is not None:
self.tree[x] = self.update_fn(self.tree[x], self.lazy[x]*self.count[x]) # modified
L += self.base
R += self.base
# self.__push(L) # enable if range assignment
# self.__push(R) # enable if range assignment
L0, R0 = L, R
while L <= R:
if L & 1: # is right child
self.__apply(L, h)
L += 1
if R & 1 == 0: # is left child
self.__apply(R, h)
R -= 1
L >>= 1
R >>= 1
pull(L0)
pull(R0)
def query(self, L, R):
if L > R:
return None
L += self.base
R += self.base
self.__push(L)
self.__push(R)
left = right = None
while L <= R:
if L & 1:
left = self.query_fn(left, self.tree[L])
L += 1
if R & 1 == 0:
right = self.query_fn(self.tree[R], right)
R -= 1
L >>= 1
R >>= 1
return self.query_fn(left, right)
result = accu = 0
sl = {}
st = SegmentTree(len(nums))
for i in xrange(len(nums)):
j = sl[nums[i]] if nums[i] in sl else -1
# sum(count(k, i)^2 for k in range(i+1)) - sum(count(k, i-1)^2 for k in range(i))
# = sum(2*count(k, i-1)+1 for k in range(j+1, i+1))
# = (i-j) + sum(2*count(k, i-1) for k in range(j+1, i+1))
accu = (accu+((i-j)+2*max(st.query(j+1, i), 0)))%MOD
result = (result+accu)%MOD
st.update(j+1, i, 1) # count(k, i) = count(k, i-1)+(1 if k >= j+1 else 0) for k in range(i+1)
sl[nums[i]] = i
return result
# Time: O(n^2)
# Space: O(n)
# hash table
class Solution3(object):
def sumCounts(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
MOD = 10**9+7
result = 0
for i in xrange(len(nums)):
lookup = set()
for j in reversed(xrange(i+1)):
lookup.add(nums[j])
result = (result+len(lookup)**2) % MOD
return result