-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsnakeclef_effnetb4.py
188 lines (159 loc) · 5.38 KB
/
snakeclef_effnetb4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
'''
!pwd
import os
os.chdir(os.path.join('/', 'content', 'drive', 'MyDrive', 'Research', 'LifeCLEF\'22', 'SnakeCLEF-2022', 'Dataset', 'SNAKE_CLEF'))
!pwd
# - Karthik
'''
"""
from efficientnet.efficientnet.model import EfficientNetB4
import tensorflow as tf
import keras.utils
import numpy as np
import os
from skimage import io, transform, color
from PIL import Image
import pandas as pd
print(tf.config.list_physical_devices('GPU'))
print("GPU Count: ", len(tf.config.list_physical_devices('GPU')))
BATCH_SIZE=8
IMG_SIZE=(224,224)
check=[]
class InputSequencer(tf.keras.utils.Sequence):
def __init__(self, base_path=None, shuffle=True):
self.label_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'metalabels')
self.BATCH_SIZE = BATCH_SIZE
self.IMG_SIZE = IMG_SIZE
self.shuffle = shuffle
self.csv_filename = "SnakeCLEF2022-TrainMetadata.csv"
self.x_col_name = "file_path"
self.y_col_name = "class_id"
self.check = []
print(os.getcwd())
self.data_file = pd.read_csv(self.csv_filename)
print(self.data_file.columns)
self.data_file.head()
print("Classes:", max(self.data_file.class_id.unique())+1)
self.num_data_pts = len(self.data_file)
print(self.num_data_pts)
self.base_path = base_path
self.meta_cols = [ 'code', 'endemic']
#self.indexes = np.arange(len(self.image_paths))
self.on_epoch_end()
self.meta_encoders = []
for col in self.meta_cols:
encoder = LabelEncoder()
encoder.classes_ = np.load(os.path.join(self.label_path, col+'_classes.npy'), allow_pickle=True)
self.meta_encoders.append(encoder)
def on_epoch_end(self, *args):
self.check = []
pass
"""
if(self.shuffle):
np.random.shuffle(self.indexes)
"""
def __len__(self):
return self.num_data_pts // self.BATCH_SIZE
pass
def encode_metadata(self, df_part):
encoded = []
for encoder, col in zip(self.meta_encoders, self.meta_cols):
encoded.append(encoder.transform(df_part[col]))
return encoded
def __getitem__(self, idx):
"""Returns tuple (input, target) correspond to batch #idx."""
#
# data_rows = self.data_file.sample(n=self.BATCH_SIZE,replace=False)
# batch_paths = data_rows[self.x_col_name].to_list()
# batch_labels = data_rows[self.y_col_name].to_list()
# batch_labels = list(data_rows.loc[:, [self.y_col_name]])
if self.base_path is None:
base_path="/usr/home/bharathi/snake_clef2022"
else:
base_path = self.base_path
'''
# Karthik
base_path = os.path.join('/', 'content', 'drive', 'MyDrive', 'Research', 'LifeCLEF\'22', 'SnakeCLEF-2022', 'Dataset', 'SNAKE_CLEF', 'SnakeCLEF2022-small_size', 'SnakeCLEF2022-small_size')
'''
batch_images = []
batch_labels = []
batch_meta = []
# The resize error may be occuring because the file is not found and `img` holds None
# Adding file existence check
while len(batch_images)<self.BATCH_SIZE:
new_row = self.data_file.sample(n=1, replace=False)
path = new_row[self.x_col_name].to_list()[0]
label = new_row[self.y_col_name].to_list()[0]
if(path in self.check):
#print("check")
continue
else:
#print("append")
self.check.append(path)
try:
img = Image.open(os.path.join(base_path, path)).convert('RGB')
except FileNotFoundError:
print("file not found")
continue
except Exception:
print("Image corrupt")
continue
# Resize
img_res = img.resize(self.IMG_SIZE)
# print(os.path.join(base_path,path))
image_data = np.array(np.asarray(img_res), dtype='uint8')
batch_meta.append(self.encode_metadata(new_row))
batch_images.append(image_data)
batch_labels.append(label)
# print(f"{len(batch_images)} of {self.BATCH_SIZE} images prepared")
#print(path)
#print(np.array(batch_images).shape)
return ([np.array(batch_images), np.squeeze(np.array(batch_meta))], np.array(batch_labels))
data_path = os.path.join('./Datasets/SnakeCLEF2022-large_size/')
data_reader = InputSequencer(base_path=data_path)
inps, labels = data_reader[5]
print(inps[0])
print(inps[1])
print(labels)
print("TESTED")
"""
Randomize or shuffle training data and ensure that all images are fed to the model
Upload images to the drive
"""
from keras.utils.vis_utils import plot_model
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
print(keras.__version__)
print(tf.__version__)
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, Flatten, Input
from keras import backend as K
model = EfficientNetB4(
include_top=False,
weights='imagenet',
input_shape=(*IMG_SIZE, 3)
)
# model.summary(line_length=150)
flatten = Flatten()
new_layer2 = Dense(1604, activation='softmax', name='my_dense_2')
inp2 = model.input
out2 = new_layer2(flatten(model.output))
opt = keras.optimizers.Adam(learning_rate=1e-05)
model2 = Model(inp2, out2)
model2.summary()
model2.compile(
optimizer=opt,
loss='sparse_categorical_crossentropy',
metrics=['acc']
)
#need to create weight folder
weight_save = keras.callbacks.ModelCheckpoint('weights/weights-efficientnetb4/weights-epoch-1_{epoch:03d}.h5', save_weights_only=True, period=1)
on_epoch_end_call = keras.callbacks.LambdaCallback(on_epoch_end=data_reader.on_epoch_end())
# model2.load_weights('/home/miruna/LifeCLEF/SnakeCLEF/weights/weights-efficientnetb4/weights-epoch-2_005.h5')
model2.fit(data_reader,
epochs=10,
verbose=1,
steps_per_epoch=1,
callbacks=[weight_save, on_epoch_end_call]
)