Skip to content

Commit 017c51b

Browse files
committed
0162 Solveded
1 parent c11ab1e commit 017c51b

File tree

5 files changed

+98
-0
lines changed

5 files changed

+98
-0
lines changed

Diff for: 0162-Find-Peak-Element/Animation/1.m4v

2.91 MB
Binary file not shown.

Diff for: 0162-Find-Peak-Element/Animation/2.gif

1.9 MB
Loading

Diff for: 0162-Find-Peak-Element/Animation/2.m4v

879 KB
Binary file not shown.

Diff for: 0162-Find-Peak-Element/Animation/Animation.gif

5.64 MB
Loading
+98
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,98 @@
1+
题目来源于LeetCode上第162号问题:寻找峰值。题目难度为中等,目前通过率46.3%。
2+
##题目描述
3+
峰值元素是指其值大于左右相邻值的元素。
4+
给定一个输入数组``` nums```,其中 ```nums[i] ≠ nums[i+1]```,找到峰值元素并返回其索引。
5+
数组可能包含多个峰值,在这种情况下,返回任何一个峰值所在位置即可。
6+
你可以假设 ```nums[-1] = nums[n] = -∞```
7+
8+
```
9+
示例 1:
10+
11+
输入:nums = [1,2,3,1]
12+
输出: 2
13+
解释: 3 是峰值元素,你的函数应该返回其索引 2。
14+
示例 2:
15+
16+
输入: nums = [1,2,1,3,5,6,4]
17+
输出: 1 或 5
18+
解释: 你的函数可以返回索引 1,其峰值元素为 2;或者返回索引 5, 其峰值元素为 6。
19+
说明:
20+
你的解法应该是 O(logN) 时间复杂度的。
21+
```
22+
##题目解析
23+
我们从题目中可以了解到以下三个关键信息:
24+
- ```nums[i] ≠ nums[i+1]```,意味着数组中没有值相等的元素,要么```nums[i]>nums[i+1]```,要么```nums[i]<nums[i+1]```
25+
- 数组可能有多个峰值,我们只需要返回任意一个峰值的索引就行了。
26+
- 假设```nums[-1] = nums[n] = -∞```,因为数组两端都是负无穷,这意味着从```nums[0]```开始,一直找到有个值```nums[i]>nums[i+1]```,那么数组肯定有一个峰值,我们将他的索引返回就行了。
27+
28+
为了更好的理解解题思路,我们先从线性搜索方法开始解析,并且将数组分为三类,即升序数组,降序数组,无序数组。然后,由于我们只需要找到任意一个峰值,返回它的索引就行。所以我们还可以用二分查找法(**PS:凡是搜索查找类型的题,首先想到的应该是效率较高的二分查找方法**
29+
## 解法一:线性扫描
30+
31+
**1、假设数组是升序数组**
32+
![nums为升序数组](https://upload-images.jianshu.io/upload_images/1840444-fd9855e123fd87a8.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
33+
那么很明显我们的峰值是最后一个元素5,因为```nums[0]>nums[1],nums[1]>nums[2], ......,nums[3]>nums[4]``````nums[4]```是最后一个元素,所以它的峰值索引是4。
34+
**2、假设数组是降序数组**
35+
![nums为降序数组](https://upload-images.jianshu.io/upload_images/1840444-df09e0d01139cd5f.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
36+
因为```nums[-1]=-∞```,并且```nums[0]>mums[1]```,所以```nums[0]```就是一个峰值,返回峰值索引是0。
37+
**3、假设数组是无序数组**
38+
![nums为无序数组](https://upload-images.jianshu.io/upload_images/1840444-9be820e4a5c0d71d.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
39+
同样我们从```nums[0]```开始往后比较大小,因为```nums[0]<nums[1],mums[1]<nums[2],mums[2]<nums[3],mums[3]>mums[4]```,所以可以知道```mums[3]```是一个峰值,返回索引是3。
40+
41+
通过以上将数组分类解析,我们可以发现只要从```nums[0]```开始,与后一个元素比较,直到找到 ```nums[i]>nums[i+1]```,为止,我们就找到了一个峰值,这个峰值的索引就是```i```,如果一直都没有找到```nums[i]>nums[i+1]```的情况,那么峰值就是数组的最后一个元素,索引就是```nums.length-1```
42+
43+
##动画理解
44+
45+
![](../Animation/Animation.gif)
46+
47+
##代码实现
48+
```
49+
public class Solution {
50+
public int findPeakElement(int[] nums) {
51+
for (int i = 0; i < nums.length - 1; i++) {
52+
if (nums[i] > nums[i + 1])
53+
return i;
54+
}
55+
return nums.length - 1;
56+
}
57+
}
58+
```
59+
##复杂度分析
60+
61+
- 时间复杂度:O(n),我们对长度为 n 的数组 nums 只进行一次遍历。
62+
- 空间复杂度:O(1),仅用了常数空间
63+
64+
##解法二:二分查找
65+
66+
根据二分查找原理,我们假设左边索引```L=0```,右边索引```R=nums.length - 1```,中间索引```M=(L+R)/2```,现在主要就是判断这个峰值是在```M```的左边还是右边,然后移动```L```或者```R```来进一步缩小搜索范围。
67+
68+
我们找到中间元素,然后跟方法一线性扫描一样,与中间元素的右边元素比较。
69+
- 如果```nums[M]<nums[M+1]```那么可以知道中间元素```M```的右边肯定会有一个峰值,所以我们把```L```移到```M+1```的位置,在```M```的右边查找。并且重新计算```M```的值。
70+
- 如果```nums[M]>nums[M+1]```那么可以知道中间元素```M```的左边肯定会有一个峰值,所以我们把```R```移到```M```的位置,在```M```的左边查找,并且重新计算```M```的值。
71+
- 重复以上步骤,直到```R=L```,那么这个就是峰值元素。
72+
73+
##动画理解
74+
75+
![](../Animation/2.gif)
76+
77+
##代码实现
78+
79+
```
80+
public class Solution {
81+
public int findPeakElement(int[] nums) {
82+
int l = 0, r = nums.length - 1;
83+
while (l < r) {
84+
int mid = (l + r) / 2;
85+
if (nums[mid] > nums[mid + 1])
86+
r = mid;
87+
else
88+
l = mid + 1;
89+
}
90+
return l;
91+
}
92+
}
93+
```
94+
95+
##复杂度分析
96+
97+
- 时间复杂度:O(log2(n)),每一步都将搜索空间减半,其中n为 nums 数组的长度。。
98+
- 空间复杂度:O(1),仅用了常数空间

0 commit comments

Comments
 (0)