Skip to content

Commit 9eaa766

Browse files
committed
add VGG16-Avg-SSDH example
1 parent c4cb40c commit 9eaa766

File tree

4 files changed

+5504
-0
lines changed

4 files changed

+5504
-0
lines changed
+386
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,386 @@
1+
name: "VGG_ILSVRC_16_layers"
2+
input: "data"
3+
input_dim: 10
4+
input_dim: 3
5+
input_dim: 224
6+
input_dim: 224
7+
layer {
8+
name: "conv1_1"
9+
type: "Convolution"
10+
bottom: "data"
11+
top: "conv1_1"
12+
convolution_param {
13+
num_output: 64
14+
pad: 1
15+
kernel_size: 3
16+
}
17+
}
18+
layer {
19+
name: "relu1_1"
20+
type: "ReLU"
21+
bottom: "conv1_1"
22+
top: "conv1_1"
23+
}
24+
layer {
25+
name: "conv1_2"
26+
type: "Convolution"
27+
bottom: "conv1_1"
28+
top: "conv1_2"
29+
convolution_param {
30+
num_output: 64
31+
pad: 1
32+
kernel_size: 3
33+
}
34+
}
35+
layer {
36+
name: "relu1_2"
37+
type: "ReLU"
38+
bottom: "conv1_2"
39+
top: "conv1_2"
40+
}
41+
layer {
42+
name: "pool1"
43+
type: "Pooling"
44+
bottom: "conv1_2"
45+
top: "pool1"
46+
pooling_param {
47+
pool: MAX
48+
kernel_size: 2
49+
stride: 2
50+
}
51+
}
52+
layer {
53+
name: "conv2_1"
54+
type: "Convolution"
55+
bottom: "pool1"
56+
top: "conv2_1"
57+
convolution_param {
58+
num_output: 128
59+
pad: 1
60+
kernel_size: 3
61+
}
62+
}
63+
layer {
64+
name: "relu2_1"
65+
type: "ReLU"
66+
bottom: "conv2_1"
67+
top: "conv2_1"
68+
}
69+
layer {
70+
name: "conv2_2"
71+
type: "Convolution"
72+
bottom: "conv2_1"
73+
top: "conv2_2"
74+
convolution_param {
75+
num_output: 128
76+
pad: 1
77+
kernel_size: 3
78+
}
79+
}
80+
layer {
81+
name: "relu2_2"
82+
type: "ReLU"
83+
bottom: "conv2_2"
84+
top: "conv2_2"
85+
}
86+
layer {
87+
name: "pool2"
88+
type: "Pooling"
89+
bottom: "conv2_2"
90+
top: "pool2"
91+
pooling_param {
92+
pool: MAX
93+
kernel_size: 2
94+
stride: 2
95+
}
96+
}
97+
layer {
98+
name: "conv3_1"
99+
type: "Convolution"
100+
bottom: "pool2"
101+
top: "conv3_1"
102+
convolution_param {
103+
num_output: 256
104+
pad: 1
105+
kernel_size: 3
106+
}
107+
}
108+
layer {
109+
name: "relu3_1"
110+
type: "ReLU"
111+
bottom: "conv3_1"
112+
top: "conv3_1"
113+
}
114+
layer {
115+
name: "conv3_2"
116+
type: "Convolution"
117+
bottom: "conv3_1"
118+
top: "conv3_2"
119+
convolution_param {
120+
num_output: 256
121+
pad: 1
122+
kernel_size: 3
123+
}
124+
}
125+
layer {
126+
name: "relu3_2"
127+
type: "ReLU"
128+
bottom: "conv3_2"
129+
top: "conv3_2"
130+
}
131+
layer {
132+
name: "conv3_3"
133+
type: "Convolution"
134+
bottom: "conv3_2"
135+
top: "conv3_3"
136+
param {
137+
lr_mult: 1
138+
decay_mult: 1
139+
}
140+
param {
141+
lr_mult: 2
142+
decay_mult: 0
143+
}
144+
convolution_param {
145+
num_output: 256
146+
pad: 1
147+
kernel_size: 3
148+
}
149+
}
150+
layer {
151+
name: "relu3_3"
152+
type: "ReLU"
153+
bottom: "conv3_3"
154+
top: "conv3_3"
155+
}
156+
layer {
157+
name: "pool3"
158+
type: "Pooling"
159+
bottom: "conv3_3"
160+
top: "pool3"
161+
pooling_param {
162+
pool: MAX
163+
kernel_size: 2
164+
stride: 2
165+
}
166+
}
167+
layer {
168+
name: "conv4_1"
169+
type: "Convolution"
170+
bottom: "pool3"
171+
top: "conv4_1"
172+
convolution_param {
173+
num_output: 512
174+
pad: 1
175+
kernel_size: 3
176+
}
177+
}
178+
layer {
179+
name: "relu4_1"
180+
type: "ReLU"
181+
bottom: "conv4_1"
182+
top: "conv4_1"
183+
}
184+
layer {
185+
name: "conv4_2"
186+
type: "Convolution"
187+
bottom: "conv4_1"
188+
top: "conv4_2"
189+
convolution_param {
190+
num_output: 512
191+
pad: 1
192+
kernel_size: 3
193+
}
194+
}
195+
layer {
196+
name: "relu4_2"
197+
type: "ReLU"
198+
bottom: "conv4_2"
199+
top: "conv4_2"
200+
}
201+
layer {
202+
name: "conv4_3"
203+
type: "Convolution"
204+
bottom: "conv4_2"
205+
top: "conv4_3"
206+
convolution_param {
207+
num_output: 512
208+
pad: 1
209+
kernel_size: 3
210+
}
211+
}
212+
layer {
213+
name: "relu4_3"
214+
type: "ReLU"
215+
bottom: "conv4_3"
216+
top: "conv4_3"
217+
}
218+
layer {
219+
name: "pool4"
220+
type: "Pooling"
221+
bottom: "conv4_3"
222+
top: "pool4"
223+
pooling_param {
224+
pool: MAX
225+
kernel_size: 2
226+
stride: 2
227+
}
228+
}
229+
layer {
230+
name: "conv5_1"
231+
type: "Convolution"
232+
bottom: "pool4"
233+
top: "conv5_1"
234+
convolution_param {
235+
num_output: 512
236+
pad: 1
237+
kernel_size: 3
238+
}
239+
}
240+
layer {
241+
name: "relu5_1"
242+
type: "ReLU"
243+
bottom: "conv5_1"
244+
top: "conv5_1"
245+
}
246+
layer {
247+
name: "conv5_2"
248+
type: "Convolution"
249+
bottom: "conv5_1"
250+
top: "conv5_2"
251+
convolution_param {
252+
num_output: 512
253+
pad: 1
254+
kernel_size: 3
255+
}
256+
}
257+
layer {
258+
name: "relu5_2"
259+
type: "ReLU"
260+
bottom: "conv5_2"
261+
top: "conv5_2"
262+
}
263+
layer {
264+
name: "conv5_3"
265+
type: "Convolution"
266+
bottom: "conv5_2"
267+
top: "conv5_3"
268+
convolution_param {
269+
num_output: 512
270+
pad: 1
271+
kernel_size: 3
272+
}
273+
}
274+
layer {
275+
name: "relu5_3"
276+
type: "ReLU"
277+
bottom: "conv5_3"
278+
top: "conv5_3"
279+
}
280+
layer {
281+
name: "pool5"
282+
type: "Pooling"
283+
bottom: "conv5_3"
284+
top: "pool5"
285+
pooling_param {
286+
# pool: MAX
287+
pool: AVE
288+
kernel_size: 14
289+
stride: 1
290+
}
291+
}
292+
#layer {
293+
# name: "fc6"
294+
# type: "InnerProduct"
295+
# bottom: "pool5"
296+
# top: "fc6"
297+
# param {
298+
# lr_mult: 1
299+
# decay_mult: 1
300+
# }
301+
# param {
302+
# lr_mult: 2
303+
# decay_mult: 0
304+
# }
305+
# inner_product_param {
306+
# num_output: 4096
307+
# }
308+
#}
309+
#layer {
310+
# name: "relu6"
311+
# type: "ReLU"
312+
# bottom: "fc6"
313+
# top: "fc6"
314+
#}
315+
#layer {
316+
# name: "drop6"
317+
# type: "Dropout"
318+
# bottom: "fc6"
319+
# top: "fc6"
320+
# dropout_param {
321+
# dropout_ratio: 0.5
322+
# }
323+
#}
324+
#layer {
325+
# name: "fc7"
326+
# type: "InnerProduct"
327+
# bottom: "fc6"
328+
# top: "fc7"
329+
# param {
330+
# lr_mult: 1
331+
# decay_mult: 1
332+
# }
333+
# param {
334+
# lr_mult: 2
335+
# decay_mult: 0
336+
# }
337+
# inner_product_param {
338+
# num_output: 4096
339+
# }
340+
#}
341+
#layer {
342+
# name: "relu7"
343+
# type: "ReLU"
344+
# bottom: "fc7"
345+
# top: "fc7"
346+
#}
347+
#layer {
348+
# name: "drop7"
349+
# type: "Dropout"
350+
# bottom: "fc7"
351+
# top: "fc7"
352+
# dropout_param {
353+
# dropout_ratio: 0.5
354+
# }
355+
#}
356+
layer {
357+
name: "latent_layer"
358+
type: "InnerProduct"
359+
bottom: "pool5"
360+
top: "latent_layer"
361+
param {
362+
lr_mult: 1
363+
decay_mult: 1
364+
}
365+
param {
366+
lr_mult: 2
367+
decay_mult: 0
368+
}
369+
inner_product_param {
370+
num_output: 48
371+
weight_filler {
372+
type: "gaussian"
373+
std: 0.005
374+
}
375+
bias_filler {
376+
type: "constant"
377+
value: 1
378+
}
379+
}
380+
}
381+
layer {
382+
name: "encode_neuron"
383+
bottom: "latent_layer"
384+
top: "encode_neuron"
385+
type: "Sigmoid"
386+
}

0 commit comments

Comments
 (0)