-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlogistic_regression.py
68 lines (51 loc) · 1.91 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
'''
A logistic regression learning algorithm example using TensorFlow library.
'''
from __future__ import print_function
import tensorflow as tf
#import
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot = True)
#parameters
learning_rate = 0.01
training_epochs = 25
batch_size = 100
display_step = 1
#tf graph input
x = tf.placeholder(tf.float32, [None, 784]) #mnist data image of shape 784
y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition->10 classes
#Set model weights
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
#Construct model
pred = tf.nn.softmax(tf.matmul( x, W ) + b) #softmax
#Minimize error using cross entropy
cost = tf.reduce_mean( - tf.reduce_sum(y * tf.log(pred), reduction_indices = 1))
#Gradient descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
#initializing the variables
init = tf.global_variables_initializer()
#launch the grap
with tf.Session() as sess:
sess.run(init)
#Training cycle
for epoch in range(training_epochs):
avg_cost = 0
#print(mnist.train.num_examples)
total_batch = int(mnist.train.num_examples / batch_size)
#lopp over all batchs
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
#run optimization op (backprop) and cost op(to get the loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs, y: batch_ys})
#compute average loss
avg_cost += c/total_batch
#Display logs per epoch step
if (epoch +1 ) % display_step ==0:
print("Epoch:", '%04d' % (epoch +1), "cost:", "{:.9f}".format(avg_cost))
print("optimization finished")
#test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y,1))
#calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))