-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy pathddpg.py
237 lines (194 loc) · 8.79 KB
/
ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""
ddpg.py
"""
__author__ = "[email protected]"
__credits__ = "https://github.com/yanpanlau"
# import simulator as environment env()
from Environment import OmnetBalancerEnv
from Environment import OmnetLinkweightEnv
from Environment import vector_to_file
import numpy as np
import tensorflow as tf
import sys
import json
from ReplayBuffer import ReplayBuffer
from ActorNetwork import ActorNetwork
from CriticNetwork import CriticNetwork
from OU import OU
from helper import setup_exp, setup_run, parser, pretty, scale
def playGame(DDPG_config, train_indicator=1): #1 means Train, 0 means simply Run
# SETUP STARTS HERE
if train_indicator > 0:
folder = setup_run(DDPG_config)
elif train_indicator == 0:
folder = DDPG_config['EXPERIMENT']
if DDPG_config['RSEED'] == 0:
DDPG_config['RSEED'] = None
np.random.seed(DDPG_config['RSEED'])
ACTIVE_NODES = DDPG_config['ACTIVE_NODES']
# Generate an environment
if DDPG_config['ENV'] == 'balancing':
env = OmnetBalancerEnv(DDPG_config, folder)
elif DDPG_config['ENV'] == 'label':
env = OmnetLinkweightEnv(DDPG_config, folder)
action_dim, state_dim = env.a_dim, env.s_dim
MU = DDPG_config['MU']
THETA = DDPG_config['THETA']
SIGMA = DDPG_config['SIGMA']
ou = OU(action_dim, MU, THETA, SIGMA) #Ornstein-Uhlenbeck Process
BUFFER_SIZE = DDPG_config['BUFFER_SIZE']
BATCH_SIZE = DDPG_config['BATCH_SIZE']
GAMMA = DDPG_config['GAMMA']
EXPLORE = DDPG_config['EXPLORE']
EPISODE_COUNT = DDPG_config['EPISODE_COUNT']
MAX_STEPS = DDPG_config['MAX_STEPS']
if EXPLORE <= 1:
EXPLORE = EPISODE_COUNT * MAX_STEPS * EXPLORE
# SETUP ENDS HERE
reward = 0
done = False
wise = False
step = 0
epsilon = 1
indicator = 0
#Tensorflow GPU optimization
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
from keras import backend as K
K.set_session(sess)
actor = ActorNetwork(sess, state_dim, action_dim, DDPG_config)
critic = CriticNetwork(sess, state_dim, action_dim, DDPG_config)
buff = ReplayBuffer(BUFFER_SIZE) #Create replay buffer
ltm = ['a_h0', 'a_h1', 'a_V', 'c_w1', 'c_a1', 'c_h1', 'c_h3', 'c_V']
layers_to_mind = {}
L2 = {}
for k in ltm:
layers_to_mind[k] = 0
L2[k] = 0
vector_to_file(ltm, folder + 'weightsL2' + 'Log.csv', 'w')
#Now load the weight
try:
actor.model.load_weights(folder + "actormodel.h5")
critic.model.load_weights(folder + "criticmodel.h5")
actor.target_model.load_weights(folder + "actormodel.h5")
critic.target_model.load_weights(folder + "criticmodel.h5")
print("Weight load successfully")
except:
print("Cannot find the weight")
print("OMNeT++ Experiment Start.")
# initial state of simulator
s_t = env.reset()
loss = 0
for i in range(EPISODE_COUNT):
print("Episode : " + str(i) + " Replay Buffer " + str(buff.count()))
total_reward = 0
for j in range(MAX_STEPS):
epsilon -= 1.0 / EXPLORE
a_t = np.zeros([1, action_dim])
noise_t = np.zeros([1, action_dim])
a_t_original = actor.model.predict(s_t.reshape(1, s_t.shape[0]))
if train_indicator and epsilon > 0 and (step % 1000) // 100 != 9:
noise_t[0] = epsilon * ou.evolve()
a = a_t_original[0]
n = noise_t[0]
a_t[0] = np.where((a + n > 0) & (a + n < 1), a + n, a - n).clip(min=0, max=1)
# execute action
s_t1, r_t, done = env.step(a_t[0])
buff.add(s_t, a_t[0], r_t, s_t1, done) #Add replay buffer
scale = lambda x: x
#Do the batch update
batch = buff.getBatch(BATCH_SIZE)
states = scale(np.asarray([e[0] for e in batch]))
actions = scale(np.asarray([e[1] for e in batch]))
rewards = scale(np.asarray([e[2] for e in batch]))
new_states = scale(np.asarray([e[3] for e in batch]))
dones = np.asarray([e[4] for e in batch])
y_t = np.zeros([len(batch), action_dim])
target_q_values = critic.target_model.predict([new_states, actor.target_model.predict(new_states)])
for k in range(len(batch)):
if dones[k]:
y_t[k] = rewards[k]
else:
y_t[k] = rewards[k] + GAMMA*target_q_values[k]
if train_indicator and len(batch) >= BATCH_SIZE:
loss = critic.model.train_on_batch([states, actions], y_t)
a_for_grad = actor.model.predict(states)
grads = critic.gradients(states, a_for_grad)
# does this give an output like train_on_batch above? NO
actor.train(states, grads)
actor.target_train()
critic.target_train()
with open(folder + 'lossLog.csv', 'a') as file:
file.write(pretty(loss) + '\n')
total_reward += r_t
s_t = s_t1
for layer in actor.model.layers + critic.model.layers:
if layer.name in layers_to_mind.keys():
L2[layer.name] = np.linalg.norm(np.ravel(layer.get_weights()[0])-layers_to_mind[layer.name])
# vector_to_file(np.ravel(layer.get_weights()[0]), folder + 'weights_' + layer.name + 'Log.csv', 'a')
layers_to_mind[layer.name] = np.ravel(layer.get_weights()[0])
# if max(L2.values()) <= 0.02:
# wise = True
if train_indicator and len(batch) >= BATCH_SIZE:
vector_to_file([L2[x] for x in ltm], folder + 'weightsL2' + 'Log.csv', 'a')
vector_to_file(a_t_original[0], folder + 'actionLog.csv', 'a')
vector_to_file(noise_t[0], folder + 'noiseLog.csv', 'a')
if 'PRINT' in DDPG_config.keys() and DDPG_config['PRINT']:
print("Episode", "%5d" % i, "Step", "%5d" % step, "Reward", "%.6f" % r_t)
print("Epsilon", "%.6f" % max(epsilon, 0))
att_ = np.split(a_t[0], ACTIVE_NODES)
for _ in range(ACTIVE_NODES):
att_[_] = np.insert(att_[_], _, -1)
att_ = np.concatenate(att_)
print("Action\n", att_.reshape(ACTIVE_NODES, ACTIVE_NODES))
print(max(L2, key=L2.get), pretty(max(L2.values())))
step += 1
if done or wise:
break
if np.mod((i+1), 2) == 0: # writes at every 2nd episode
if (train_indicator):
actor.model.save_weights(folder + "actormodel.h5", overwrite=True)
actor.model.save_weights(folder + "actormodel" + str(step) + ".h5")
with open(folder + "actormodel.json", "w") as outfile:
outfile.write(actor.model.to_json(indent=4) + '\n')
critic.model.save_weights(folder + "criticmodel.h5", overwrite=True)
critic.model.save_weights(folder + "criticmodel" + str(step) + ".h5")
with open(folder + "criticmodel.json", "w") as outfile:
outfile.write(critic.model.to_json(indent=4) + '\n')
print("TOTAL REWARD @ " + str(i) + "-th Episode : Reward " + str(total_reward))
print("Total Step: " + str(step))
print("")
env.end() # This is for shutting down
print("Finish.")
if __name__ == "__main__":
# VANILLA
if len(sys.argv) == 1:
with open('DDPG.json') as jconfig:
DDPG_config = json.load(jconfig)
DDPG_config['EXPERIMENT'] = setup_exp()
playGame(DDPG_config, train_indicator=1)
# PLAY
elif len(sys.argv) == 3:
# WATCH OUT: it appends to *Log.csv files
if sys.argv[1] == 'play':
with open(sys.argv[2] + '/' + 'DDPG.json') as jconfig:
DDPG_config = json.load(jconfig)
# here remove double slash at end if present
experiment = sys.argv[2] if sys.argv[2][-1] == '/' else sys.argv[2] + '/'
DDPG_config['EXPERIMENT'] = experiment
playGame(DDPG_config, train_indicator=0)
# PLAY WITH FILE TRAFFIC
elif len(sys.argv) == 4:
# WATCH OUT: it appends to *Log.csv files
if sys.argv[1] == 'play':
with open(sys.argv[2] + '/' + 'DDPG.json') as jconfig:
DDPG_config = json.load(jconfig)
# here remove double slash at end if present
experiment = sys.argv[2] if sys.argv[2][-1] == '/' else sys.argv[2] + '/'
DDPG_config['EXPERIMENT'] = experiment
# DDPG_config['EPISODE_COUNT'] = 1
# DDPG_config['MAX_STEPS'] = 1
if DDPG_config['TRAFFIC'] == 'DIR:':
DDPG_config['TRAFFIC'] += sys.argv[3]
playGame(DDPG_config, train_indicator=0)