-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
897 lines (819 loc) · 39.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
# utils and db things here
import os
import re
import shutil
import sys
from datetime import datetime
from hashlib import md5
from pathlib import Path
from pickle import PicklingError
import random
import argparse
import pandas as pd
import polars as pl
import pymysql
import pytz
from loguru import logger
from polars import ComputeError
from polars import read_csv as read_csv_polars
from polars.exceptions import ColumnNotFoundError, InvalidOperationError
from sqlalchemy import create_engine, text
from sqlalchemy.exc import ArgumentError, DataError, IntegrityError, InternalError, OperationalError, ProgrammingError
from sqlalchemy.orm import sessionmaker
from commonformats import fmt_20, fmt_24, fmt_26, fmt_28, fmt_30, fmt_34, fmt_36
from datamodels import database_init
MIN_FILESIZE = 3000
def get_parser(appname):
parser = argparse.ArgumentParser(description=appname)
parser.add_argument("--fixer", default=False, help="run fixer, set --bakpath", action="store_true", dest="fixer")
parser.add_argument("--fixcsv", default=False, help="repair csv", action="store_true", dest="fixcsv")
parser.add_argument("--foobar", default=False, help="foobar", action="store_true")
parser.add_argument("--getcols", default=False, help="prep cols", action="store_true", dest="getcols")
parser.add_argument("--repairsplit", default=False, help="enable splitting of strange log files", action="store_true", dest="repairsplit", )
parser.add_argument("--samplemode", default=False, help="use samplemode, select small random number of logs-for debugging", action="store_true", dest="samplemode", )
parser.add_argument("--scanpath", default=False, help="run scanpath", action="store_true", dest="scanpath", )
parser.add_argument("--showdrops", default=False, help="show dropped columns", action="store_true", dest="showdrops", )
parser.add_argument("--skipwrites", default=False, help="skipwrites", action="store_true", dest="skipwrites", )
parser.add_argument("--filestats", default=True, help="create filestats", action="store_true", dest="filestats", )
parser.add_argument("--testnewreader", default=False, help="run testnewreader", action="store_true", dest="testnewreader", )
parser.add_argument("--threadmode", default="ppe", help="threadmode ppe/oldppe/tpe", action="store")
parser.add_argument("--torqdata", default=False, help="create torqdata", action="store_true", dest="torqdata", )
parser.add_argument("--transfer", default=False, help="transfer old logs, set oldlogpath to location of old triplogs", action="store_true", dest="transfer", )
parser.add_argument("--bakpath", nargs="?", default="/home/kth/development/torq/backups3", help="where to put backups", action="store", )
parser.add_argument("--check-file", default=False, help="check database", action="store_true", dest="check_file", )
parser.add_argument("--chunks", nargs="?", default="4", help="chunks", action="store")
parser.add_argument("--combinecsv", default=False, help="make big csv", action="store_true", dest="combinecsv", )
parser.add_argument("--create-trips", default=False, help="create trip database", action="store_true", dest="create_trips", )
parser.add_argument("--check-db", default=False, help="check database", action="store_true", dest="check_db", )
parser.add_argument("--database_dropall", default=False, help="drop database", action="store_true", dest="database_dropall", )
parser.add_argument("--dbhost", default="localhost", help="dbname", action="store")
parser.add_argument("--dbmode", default="sqlite", help="sqlmode mysql/psql/sqlite/mariadb", action="store", dest="dbmode", )
parser.add_argument("--dbname", default="torq", help="dbname", action="store")
parser.add_argument("--dbpass", default="qrot", help="dbname", action="store")
parser.add_argument("--dbuser", default="torq", help="dbname", action="store")
parser.add_argument("--dbfile", default="torqfiskur.db", help="database file", action="store")
parser.add_argument("--db_limit", default=False, help="db_limit", action="store", dest="db_limit")
parser.add_argument("--db_rowlimit", default=False, help="db_rowlimit", action="store", dest="db_rowlimit")
parser.add_argument("--db_minrows", default=100, help="db_minrows", action="store", dest="db_minrows")
parser.add_argument("--dump-db", nargs="?", default=None, help="dump database to file", action="store", )
parser.add_argument("--file", nargs="?", default=".", help="path to single csv file", action="store")
parser.add_argument("--logpath", nargs="?", default=".", help="path to csv files", action="store")
parser.add_argument("--max_workers", nargs="?", default="4", help="max_workers", action="store")
parser.add_argument("--oldlogpath", nargs="?", default=".", help="oldlogpath", action="store")
parser.add_argument("--sqlchunksize", nargs="?", default="1000", help="sql chunk", action="store")
parser.add_argument("--webstart", default=False, help="start web listener", action="store_true", dest="web", )
parser.add_argument("-i", "--info", default=False, help="show dbinfo", action="store_true", dest="dbinfo", )
parser.add_argument("-d", "--debug", default=False, help="debugmode", action="store_true", dest="debug", )
parser.add_argument("--extradebug", default=False, help="extradebug", action="store_true", dest="extradebug", )
# parser.add_argument("--gui", default=False, help="Run gui", action="store_true", dest='gui')
# parser.add_argument("--init-db", default=False, help="init database", action="store_true", dest='init_db')
return parser
class TimeZoneAwareConstructorWarning:
pass
def replace_all(text, dic):
for i, j in dic.items():
textout = text.replace(i, j)
if text != textout:
logger.warning(f"{text} -> {textout}")
return textout
def get_sanatized_column_names(orgcol):
"""
clean up column names, remove special characters and make lowercase
orgcol DataFrame.columns (list of column names) or str of column names
"""
if isinstance(orgcol, list):
newcolname = (",".join([re.sub(r"\W", "", col).lower() for col in orgcol]).encode("ascii", "ignore").decode())
newcolname += "\n"
newcolname = newcolname.lower()
return newcolname
elif isinstance(orgcol, str):
newcolname = (",".join([re.sub(r"\W", "", col).lower() for col in orgcol.split(",")]).encode("ascii", "ignore").decode())
newcolname += "\n"
return newcolname
else:
logger.warning(f"unknown type {type(orgcol)} {orgcol}")
return orgcol
def get_fixed_lines(logfile, debug=True):
# read csv file, replace badvals and fix column names
# returns a buff with the fixed csv file
with open(logfile, "r") as reader:
data0 = reader.readlines()
orgcol = data0[0].split(",")
data = data0[1:] # skip first line, fix column names later....
# lines0 = [k for k in data if not k.startswith('-')]
# lines = [replace_all(b, badvals) for b in data]
lines = [re.sub(",-,", ",0,", k) for k in data]
lines = [re.sub("∞", "0", k) for k in lines]
lines = [re.sub("â", "0", k) for k in lines]
lines = [re.sub("Â", "0", k) for k in lines]
# for bv in badvals:
# lines = [re.sub(bv,'0,',k) for k in data]
# lines = [re.sub('∞','0',k) for k in data]
# lines = [re.sub(b,'0',k) for k in data for b in badvals]
# newcolname = ','.join([re.sub(r'\W', '', col) for col in orgcol]).encode('ascii', 'ignore').decode()
# newcolname += '\n'
# newcolname = newcolname.lower()
newcolname = get_sanatized_column_names(orgcol)
# column_count = newcolname.count(',')
lines[0] = newcolname
return lines
def check_split(logfile: Path, debug=False):
"""
check if file is damanaged, if so split it and save new log files
if the file contains multiple column headers, split into multiple files for each column header line
todo, check if time difference is small between headers, then ignore and assume its part of the same trip
"""
with open(logfile, "r") as f:
data = f.readlines()
splits = sum([k[0:4].lower().count("gps") for k in data])
return splits
def fix_logfile(logfile: Path, debug=False):
"""
fix_logfile - fix bad values in csv files
returns True if ok, False if not ok
"""
# get sanatized data from csv
try:
splits = check_split(logfile, debug=debug)
if splits > 1:
logger.warning(f"[gcv] {splits=} in {logfile}")
# todo make splitter ....
return False
else:
fixedlines = get_fixed_lines(logfile, debug=debug)
# logger.info(f'fixer read {len(fixedlines)} lines from {logfile}')
# make backup of original file before overwriting
backupfile = f"{logfile}.bak"
if Path(backupfile).exists():
rx = "".join([str(random.randint(1, 100)) for k in range(4)])
newbakname = f"{logfile}.{rx}.bak"
logger.warning(f"backupfile {backupfile} exists, backing up to {newbakname} ")
shutil.copy(logfile, backupfile)
# write to fixed csv file
with open(file=logfile, mode="w", encoding="utf-8", newline="") as writer:
writer.writelines(fixedlines)
if debug:
logger.debug(f"[gcv] saved {len(fixedlines)} fixed lines to {logfile}")
return True
except FileNotFoundError as e:
logger.error(f"[gcv] {type(e)} {e} in {logfile=} ")
return False
except Exception as e:
logger.error(f"[gcv] unhandled {type(e)} {e} in {logfile}")
return False
def get_csv_files(searchpath: str, args):
# scan searchpath for csv files
torqcsvfiles = [({"csvfile": k, "csvhash": md5(open(k, "rb").read()).hexdigest(), "size": os.stat(k).st_size, "dbmode": args.dbmode, }) for k in Path(searchpath).glob("**/*.csv") if k.stat().st_size >= MIN_FILESIZE] # and not os.path.exists(f'{k}.fixed.csv')]
return torqcsvfiles
def get_bad_vals(csvfile: str):
with open(csvfile, "r") as reader:
data = reader.readlines()
for line in data:
l0 = line.split(",")
for lx in l0:
try:
lx.encode("ascii")
except (UnicodeEncodeError, UnicodeDecodeError) as e:
logger.error(f"unicodeerr: {e} in {csvfile} lt={type(line)} l={line}")
except AttributeError as e:
logger.error(f"AttributeError: {e} in {csvfile} lt={type(line)} l={line}")
def get_engine_session(args):
dburl = None
engine = None
if args.dbmode == "mysql":
dburl = f"mysql+pymysql://{args.dbuser}:{args.dbpass}@{args.dbhost}/{args.dbname}?charset=utf8mb4"
engine = create_engine(dburl)
# Session = sessionmaker(bind=engine)
# session = Session()
elif args.dbmode == "mariadb":
dburl = f"mysql+pymysql://{args.dbuser}:{args.dbpass}@{args.dbhost}/{args.dbname}?charset=utf8mb4"
engine = create_engine(dburl)
# Session = sessionmaker(bind=engine)
# session = Session()
elif args.dbmode == "psql":
dburl = f"postgresql://{args.dbuser}:{args.dbpass}@{args.dbhost}/{args.dbname}"
engine = create_engine(dburl)
# Session = sessionmaker(bind=engine)
# session = Session()
elif args.dbmode == "sqlite":
dburl = f"sqlite:///{args.dbfile}"
engine = create_engine(dburl, echo=False, connect_args={"check_same_thread": False})
# Session = sessionmaker(bind=engine)
# session = Session()
if not engine:
logger.error("no engine")
sys.exit(-1)
Session = sessionmaker(bind=engine)
session = Session()
try:
database_init(engine)
except AssertionError as e:
logger.error(f"[maindbinit] {e}")
sys.exit(-1)
return engine, session
def mapping_replace(column: str, mapping: dict):
if not mapping:
raise Exception("Mapping can't be empty")
elif not isinstance(mapping, dict):
TypeError(f"mapping must be of type dict, but is type: {type(mapping)}")
if not isinstance(column, str):
raise TypeError(f"column must be of type str, but is type: {type(column)}")
branch = pl.when(pl.col(column) == list(mapping.keys())[0]).then(list(mapping.values())[0])
for from_value, to_value in mapping.items():
try:
branch = branch.when(pl.col(column) == from_value).then(to_value)
except ComputeError as e:
logger.error(e)
return branch.otherwise(pl.col(column)).alias(column)
def sqlsender(buffer, dburl, debug=False):
engine = create_engine(url=dburl, echo=False)
# Session = sessionmaker(bind=engine)
# session = Session()
results = {
"fileid": buffer["fileid"], "csvfile": buffer["csvfile"], "status": "unknown", }
try:
tmpbuf = buffer["torqbuffer"].to_pandas()
except ValueError as e:
logger.error(f"[tosql] tmpbuf {type(e)} {e}")
raise ValueError(f"[tosql] tmpbuf {type(e)} {e}")
# logger.info(f'[tosql] tmpbuf.is_empty() {buffer["torqbuffer"].is_empty()} ')
# torqfile = (session.query(TorqFile).filter(TorqFile.fileid == results["fileid"]).first())
try:
tmpbuf.to_sql("torqlogs", con=engine, if_exists="append", index=False)
results["status"] = "success"
# torqfile = (session.query(TorqFile).filter(TorqFile.fileid == results["fileid"]).first())
except (OperationalError, ProgrammingError) as e:
# todo handle db locks
# todo handle unknown / new columns from csv files
newcol = "unknown"
if e.code == "e3q8" and "Unknown column" in e.args[0]:
try:
newcol = e.args[0].split()[4].replace("'", "")
except IndexError as iexpt:
logger.error(f"[tosql] {iexpt} while handling {e}")
logger.warning(f'[tosql] {newcol=} code={e} args={e.args} r={results} csvfile={buffer["csvfile"]}') # error:{e}
elif e.code == "e3q8" and "database is locked" in e.args[0]:
logger.warning(f'[tosql] {newcol=} code={e} args={e.args} r={results} csvfile={buffer["csvfile"]}') # error:{e}
else:
logger.error(f'[tosql] code={e} r={results} csvfile={buffer["csvfile"]}') # error:{e}
results["status"] = "error"
except InternalError as e:
logger.error(f'[tosql] InternalError {e} r={results} csvfile={buffer["csvfile"]}')
results["status"] = "error"
except IntegrityError as e:
logger.warning(f'[tosql] {type(e)} code={e} args={e.args[0]} r={results} csvfile={buffer["csvfile"]}')
results["status"] = "error"
# logger.warning(f'[tosql] {e.statement} {e.params}')
# logger.warning(f'[tosql] {e}')
except (pymysql.err.DataError, DataError) as e:
# logger.error(f'[!]{type(e)}\n{e}\n')
csvfile = buffer[
"csvfile"
] # session.query(TorqFile).filter(TorqFile.fileid == results['fileid']).first()
errmsg = e.args[0]
err_row = errmsg.split("row")[-1].strip()
err_row = errmsg.split(",")[1].split("at row")[1].strip().strip('")')
if "Incorrect double value" in errmsg:
err_col = errmsg.split()[8].split(".")[2].strip("`")
else:
err_col = errmsg.split(",")[1].split("at row")[0].split("'")[1]
# logger.warning(f'\n[tosql] code={e}\nargs={e.args[0]}\nr={results}\nerr_row: {err_row}\nerr_col:{err_col}\ntorqfile={tf_err} csvfile={buffer["csvfile"]}\n') # error:{e}
logger.warning(f'\n[tosql] {type(e)} code={e} err_row: {err_row} err_col:{err_col} torqfile={csvfile} fileid:{buffer["fileid"]}') # error:{e}
# tmpbuf = tmpbuf.drop(columns=err_col)
err_row = int(err_row)
try:
tmpbuf = tmpbuf.drop(index=err_row)
except Exception as exc:
logger.error(f'[torql] {type(exc)} {exc} err_row: {err_row} err_col:{err_col} torqfile={csvfile} fileid:{buffer["fileid"]}')
try:
tmpbuf.to_sql("torqlogs", con=engine, if_exists="append", index=False)
results["status"] = "warning"
except (IndexError, KeyError, DataError) as ex:
errmsg = ex.args[0]
logger.error(f"[!] {type(ex)}\nerrmsg: {errmsg}\n")
except (TypeError, ValueError) as e:
logger.error(f"[!]{type(e)}\n{e}\n")
return results
def sqlsender_ppe(buffer, session, debug=False):
# engine = create_engine(url=dburl, echo=False)
# Session = sessionmaker(bind=engine)
# session = Session()
results = {
"fileid": buffer["fileid"], "csvfile": buffer["csvfile"], "status": "unknown", }
try:
if not isinstance(buffer["torqbuffer"], pd.DataFrame):
tmpbuf = buffer["torqbuffer"].to_pandas()
else:
tmpbuf = buffer["torqbuffer"]
except ValueError as e:
logger.error(f"[tosql] tmpbuf {type(e)} {e}")
raise ValueError(f"[tosql] tmpbuf {type(e)} {e}")
# logger.info(f'[tosql] tmpbuf.is_empty() {buffer["torqbuffer"].is_empty()} ')
# torqfile = (session.query(TorqFile).filter(TorqFile.fileid == results["fileid"]).first())
try:
tmpbuf.to_sql("torqlogs", con=session.get_bind(), if_exists="append", index=False)
results["status"] = "success"
# torqfile = (session.query(TorqFile).filter(TorqFile.fileid == results["fileid"]).first())
except (OperationalError, ProgrammingError, ArgumentError) as e:
# todo handle db locks
# todo handle unknown / new columns from csv files
newcol = "unknown"
if e.code == "e3q8" and "Unknown column" in e.args[0]:
try:
newcol = e.args[0].split()[4].replace("'", "")
except IndexError as iexpt:
logger.error(f"[tosql] {iexpt} while handling {e}")
logger.warning(f'[tosql] {newcol=} code={e} args={e.args} r={results} csvfile={buffer["csvfile"]}') # error:{e}
elif e.code == "e3q8" and "database is locked" in e.args[0]:
logger.warning(f'[tosql] {newcol=} code={e} args={e.args} r={results} csvfile={buffer["csvfile"]}') # error:{e}
else:
logger.error(f'[tosql] code={e} r={results} csvfile={buffer["csvfile"]}') # error:{e}
results["status"] = "error"
except InternalError as e:
logger.error(f'[tosql] InternalError {e} r={results} csvfile={buffer["csvfile"]}')
results["status"] = "error"
except IntegrityError as e:
logger.warning(f'[tosql] {type(e)} code={e} args={e.args[0]} r={results} csvfile={buffer["csvfile"]}')
results["status"] = "error"
# logger.warning(f'[tosql] {e.statement} {e.params}')
# logger.warning(f'[tosql] {e}')
except (pymysql.err.DataError, DataError) as e:
# logger.error(f'[!]{type(e)}\n{e}\n')
csvfile = buffer[
"csvfile"
] # session.query(TorqFile).filter(TorqFile.fileid == results['fileid']).first()
errmsg = e.args[0]
err_row = errmsg.split("row")[-1].strip()
err_row = errmsg.split(",")[1].split("at row")[1].strip().strip('")')
if "Incorrect double value" in errmsg:
err_col = errmsg.split()[8].split(".")[2].strip("`")
else:
err_col = errmsg.split(",")[1].split("at row")[0].split("'")[1]
# logger.warning(f'\n[tosql] code={e}\nargs={e.args[0]}\nr={results}\nerr_row: {err_row}\nerr_col:{err_col}\ntorqfile={tf_err} csvfile={buffer["csvfile"]}\n') # error:{e}
logger.warning(f'\n[tosql] {type(e)} code={e} err_row: {err_row} err_col:{err_col} torqfile={csvfile} fileid:{buffer["fileid"]}') # error:{e}
# tmpbuf = tmpbuf.drop(columns=err_col)
err_row = int(err_row)
try:
tmpbuf = tmpbuf.drop(index=err_row)
except Exception as exc:
logger.error(f'[torql] {type(exc)} {exc} err_row: {err_row} err_col:{err_col} torqfile={csvfile} fileid:{buffer["fileid"]}')
try:
# tmpbuf.to_sql('torqlogs', con=engine, if_exists='append', index=False)
results["status"] = "warning"
except (IndexError, KeyError, DataError) as ex:
errmsg = ex.args[0]
logger.error(f"[!] {type(ex)}\nerrmsg: {errmsg}\n")
except (TypeError, ValueError) as e:
logger.error(f"[!]{type(e)}\n{e}\n")
return results
def read_buff(csvfile, tf_fileid, debug=False):
error_files = []
rb = {
"torqbuffer": pd.DataFrame(), "fileid": tf_fileid, "csvfile": csvfile, }
try:
torqbuffer = read_csv_polars(csvfile, ignore_errors=True, try_parse_dates=True, truncate_ragged_lines=True, ) # , use_pyarrow=True , ) #, null_values=['NaN','-','0\x88\x9e'])
torqbuffer = torqbuffer.fill_null(0).fill_nan(0)
except (InvalidOperationError, ValueError) as e:
logger.error(f"[rb] {type(e)} {e} csvfile={csvfile}")
return rb, error_files
except ComputeError as e:
logger.error(f"[rb] {type(e)} {e} csvfile={csvfile}")
return rb, error_files
# for column in torqbuffer.columns: # replace - with 0
# mapping = {'-': 0}
# try:
# if '-' in str(torqbuffer[column]):
# torqbuffer = torqbuffer.with_columns(mapping_replace(column,mapping))
# except ComputeError as e:
# logger.error(f'[rb] {type(e)} {e} csvfile={csvfile}')
# logger.warning(f'{column=} rbcol: {torqbuffer[column]} {torqbuffer.columns=}')
# devtime = torqbuffer.devicetime
# if not devtime:
# logger.error(f'[rb] missing devicetime {csvfile}')
# return None
if torqbuffer.is_empty():
logger.error(f"[rb] torqbuffer is empty {csvfile}")
return rb, error_files
fileid_series = pl.Series("fileid", [tf_fileid for k in range(len(torqbuffer))])
torqbuffer.insert_at_idx(1, fileid_series)
rbx = None
errf = None
try:
rbx, errf = fix_timestamps(torqbuffer, csvfile, tf_fileid)
except Exception as e:
logger.error(f"[rb] {type(e)} {e} in fix_timestamps {csvfile}\nrbx: {rbx}\n")
if rbx:
rb["torqbuffer"] = rbx["torqbuffer"]
if debug:
pass # logger.info(f'[rb] {csvfile} rbx={rbx} \nrb={rb}\n{error_files}\n')
if errf:
error_files.extend(errf)
return rb, error_files
# fix datetime formatting for devicetime and gpstime
# if not isinstance(torqbuffer['devicetime'], pl.Series):
# print(f"{csvfile} {torqbuffer['devicetime']}")
# if not torqbuffer['devicetime'].is_empty():
# print(f"{csvfile} {torqbuffer}")
def fix_timestamps(torqbuffer, csvfile, tf_fileid):
# todo fix gpstime and devicetime
# drop rows where either values are null or missing
error_files = []
resultbuffer = {
"torqbuffer": torqbuffer, "fileid": tf_fileid, "csvfile": csvfile, }
try:
idx = len(torqbuffer["devicetime"]) // 2 # get middle index to guess dateformat
except (ColumnNotFoundError, ComputeError, ValueError) as e:
logger.error(f"[rb] devicetime {type(e)} {e} csvfile: {csvfile}")
idx = 10
try:
idx = len(torqbuffer["gpstime"]) // 2 # get middle index to guess dateformat
except (ColumnNotFoundError, ComputeError, ValueError) as e:
logger.error(f"[rb] gpstime {type(e)} {e} csvfile: {csvfile}")
idx = 10
gpstime = torqbuffer["gpstime"]
devicetime = torqbuffer["devicetime"]
try:
if len(torqbuffer["devicetime"][idx]) == 28:
devicetime = pl.Series("devicetime", [datetime.strptime(k, fmt_28).astimezone(pytz.timezone("UTC")) for k in torqbuffer["devicetime"] if k], )
elif len(torqbuffer["devicetime"][idx]) == 24:
devicetime = pl.Series("devicetime", [datetime.strptime(k, fmt_24).astimezone(pytz.timezone("UTC")) for k in torqbuffer["devicetime"] if k], )
elif len(torqbuffer["devicetime"][idx]) == 26:
devicetime = pl.Series("devicetime", [datetime.strptime(k, fmt_26).astimezone(pytz.timezone("UTC")) for k in torqbuffer["devicetime"] if k], )
elif len(torqbuffer["devicetime"][idx]) == 20:
devicetime = pl.Series("devicetime", [datetime.strptime(k, fmt_20).astimezone(pytz.timezone("UTC")) for k in torqbuffer["devicetime"] if k], )
else:
logger.error(f'[rb] devicetime format error! len = {len(torqbuffer["devicetime"][idx])} {idx=} buffer: {torqbuffer["devicetime"]}')
except (ColumnNotFoundError, ComputeError, ValueError, TypeError) as e:
logger.error(f'[rb] devicetime {type(e)} {e} csvfile: {csvfile} len = {len(torqbuffer["devicetime"][idx])} {idx=} ')
error_files.append(csvfile)
try:
if len(torqbuffer["gpstime"][idx]) == 28:
gpstime = pl.Series("gpstime", [datetime.strptime(k, fmt_28).astimezone(pytz.timezone("UTC")) for k in torqbuffer["gpstime"] if k], )
elif len(torqbuffer["gpstime"][idx]) == 26:
# gpstime = pl.Series('gpstime', [datetime.strptime(k,fmt_26).astimezone(pytz.timezone('UTC')) for k in torqbuffer['gpstime'] if k])
gpstime = pl.Series("gpstime", [datetime.strptime(k, fmt_26).astimezone(pytz.timezone("UTC")) for k in torqbuffer["gpstime"] if k], )
elif len(torqbuffer["gpstime"][idx]) == 34:
# to fix TimeZoneAwareConstructorWarning
gpstime = pl.Series("gpstime", [datetime.strptime(k, fmt_34).astimezone(pytz.timezone("UTC")) for k in torqbuffer["gpstime"] if k], )
# gpstime = pl.Series('gpstime', [datetime.strptime(k,fmt_34) for k in torqbuffer['gpstime'] if k], strict=True, dtype_if_empty=str, nan_to_null=True)
# gpstime = pl.Series("dt", [ts.astimezone(pytz.timezone('UTC'))])
# print(f'\n timestamp \n {torqbuffer["gpstime"][idx]} \n \n')
else:
logger.error(f'[rb] gpstime format error ex: {torqbuffer["gpstime"]} len: {len(torqbuffer["gpstime"])}')
except (ComputeError, ValueError, TypeError) as e:
logger.error(f'[rb] {type(e)} {e} csvfile: {csvfile} len = {len(torqbuffer["devicetime"][idx])} {idx=} buf: {torqbuffer["gpstime"]}')
error_files.append(csvfile)
# raise e
gpstime_err = [idx for idx, k in enumerate(torqbuffer["gpstime"]) if not k]
devicetime_err = [idx for idx, k in enumerate(torqbuffer["devicetime"]) if not k]
try:
torqbuffer = torqbuffer.drop("devicetime")
if len(torqbuffer) != len(devicetime):
torqbuffer = torqbuffer[0:len(devicetime)]
torqbuffer.insert_at_idx(4, devicetime)
except (AttributeError, UnboundLocalError, pl.exceptions.ShapeError) as e:
logger.error(f"[rb] {type(e)} {e} csvfile: {csvfile} tblen={len(torqbuffer)} glen={len(gpstime)} dlen={len(devicetime)} {gpstime_err=} {devicetime_err=}")
error_files.append(csvfile)
try:
torqbuffer = torqbuffer.drop("gpstime")
if len(torqbuffer) != len(gpstime):
torqbuffer = torqbuffer[0:len(gpstime)]
torqbuffer.insert_at_idx(3, gpstime)
except (AttributeError, UnboundLocalError, pl.exceptions.ShapeError) as e:
logger.error(f"[rb] {type(e)} {e} csvfile: {csvfile} tblen={len(torqbuffer)} glen={len(gpstime)} dlen={len(devicetime)} {gpstime_err=} {devicetime_err=}")
error_files.append(csvfile)
resultbuffer["torqbuffer"] = torqbuffer
# resultbuffer = {
# 'torqbuffer' : torqbuffer, # 'fileid' : tf_fileid, # 'csvfile' : csvfile, # }
return resultbuffer, error_files
async def torq_worker_ppe(tf, session, debug=False):
buffer = None
results = None
t0 = datetime.now()
timetotal = 0
try:
buffer, error_files = read_buff(tf.csvfile, tf.fileid, debug=debug)
if not buffer:
logger.warning(f"[!] buffer is None tf={tf}")
if debug:
if len(error_files) > 0:
logger.warning(f"error_files: {len(error_files)} ") # pass # logger.debug(f'file {tf.csvfile} buffer: {len(buffer["torqbuffer"])}')
_ = [print(f"error in file: {k}") for k in error_files]
except (TypeError,) as e:
logger.error(f"[!] {type(e)} {e} in read_buff {tf.csvfile}")
raise e
except (InvalidOperationError, ValueError, PicklingError, ComputeError) as e:
logger.error(f"[!] {type(e)} {e} in read_buff {tf.csvfile}")
return None
try:
results = sqlsender_ppe(buffer, session, debug=debug) # send triplog data
timetotal += (datetime.now() - t0).seconds
if debug:
logger.debug(f't: {(datetime.now()-t0).seconds}/{timetotal} fileid {results.get("fileid")} {results.get("status")} buffer: {len(buffer["torqbuffer"])}')
except (ValueError, TypeError, PicklingError) as e:
logger.error(f'[!] {type(e)} {e} in sqlsender buffer.is_empty() {buffer["torqbuffer"].is_empty()}')
return None
def send_torqtripdata(stats_data: dict, session: sessionmaker, args: argparse.Namespace):
"""
generate some stats from torqlogs and send to database
param stats_data dict of stats, session sqlalchemy session, args
"""
# todo
# send the data generated by generate_torqdata to database
print(f'{stats_data=}')
def get_time_stats(time_cols):
stats = {}
for c in time_cols:
stats[c.name] = {
"name": c.name, f"{c.name}.min": c.min(), f"{c.name}.mean": c.mean(), f"{c.name}.max": c.max(), f"{c.name}.tdelta": c.max() - c.min(), }
return stats
def get_speed_stats(speed_cols):
stats = {}
for c in speed_cols:
stats[c.name] = {
"name": c.name, f"{c.name}.mean": c.mean(), f"{c.name}.max": c.max(), }
return stats
def get_gps_stats(gpscols):
stats = {}
for c in gpscols:
stats[c.name] = {
"name": c.name, f"{c.name}.min": c.min(), f"{c.name}.mean": c.mean(), f"{c.name}.max": c.max(), }
return stats
def get_cost_stats(cost_cols):
stats = {}
for c in cost_cols:
stats[c.name] = {
"name": c.name, f"{c.name}.min": c.min(), f"{c.name}.mean": c.mean(), f"{c.name}.max": c.max(), }
return stats
def get_temp_stats(temp_cols):
stats = {}
for c in temp_cols:
stats[c.name] = {
"name": c.name, f"{c.name}.min": c.min(), f"{c.name}.mean": c.mean(), f"{c.name}.max": c.max(), }
return stats
def check_database_columns(session, args=None, limit=1000):
"""
collect some info about database columns
"""
skip_cols = ['id', 'fileid', 'devicetime', 'gpstime','time', 'csvfile', 'csvhash', 'read_flag', 'error_flag', 'send_flag', 'send_flag', 'data_flag', 'distance']
df = pd.DataFrame(session.execute(text('select column_name from information_schema.columns where table_name = "torqlogs" order by table_name,ordinal_position')).all())
# df = pd.DataFrame(session.execute(text('select column_name from information_schema.columns where table_schema = "torq" order by table_name,ordinal_position')).all())
# df2 = pd.DataFrame(session.execute(text('SELECT id,fileid,o2sensor1widerangecurrentma FROM torqlogs WHERE o2sensor1widerangecurrentma IS NULL OR o2sensor1widerangecurrentma=";" ')).all())
column_names = sorted([k for k in set([k[0] for k in df.values]) if k not in skip_cols])
logger.info(f'found {len(column_names)} columns in database, limit:{limit}')
maxnlen = max([len(k) for k in column_names]) # longest name, for formatting
for col in column_names:
if args.debug:
logger.debug(f'checking {col} limit:{limit} ')
if not limit:
df = pd.DataFrame(session.execute(text(f'select {col} from torqlogs')).all())
else:
df = pd.DataFrame(session.execute(text(f'select {col} from torqlogs limit {limit}')).all())
try:
nulls = df.isnull().sum().values[0]
except (IndexError,AttributeError) as e:
logger.error(f'{type(e)} {e} {col=} ')
nulls = 0.0
# nullratio = len(df)/df.isnull().sum().values[0]
nr = 0.0
if nulls > 0:
try:
nr = len(df)/nulls
except (Exception, RuntimeError, ZeroDivisionError) as e:
logger.error(f'{type(e)} {e} {col=} {df.describe()}')
minval = df.min().values[0] or 0.0
mednval = df.median().values[0] or 0.0
meannval = df.mean().values[0] or 0.0
maxnval = df.max().values[0] or 0.0
print(f' {col:<{maxnlen}} nulls: {nulls:>3} nr: {nr:>3.3} {minval:>3.3} {mednval:>3.3} {meannval:>3.3} {maxnval:>3.3}')
def get_tripfile_stats(fileid, session, args=None, limit=1000):
"""
collect some info about database columns
"""
skip_cols = ['id', 'fileid', 'devicetime', 'gpstime','time', 'csvfile', 'csvhash', 'read_flag', 'error_flag', 'send_flag', 'send_flag', 'data_flag', 'distance']
df = pd.DataFrame(session.execute(text('select column_name from information_schema.columns where table_name = "torqlogs" order by table_name,ordinal_position')).all())
column_names = sorted([k for k in set([k[0] for k in df.values]) if k not in skip_cols])
logger.info(f'checking {fileid=} found {len(column_names)} columns in database, limit:{limit}')
maxnlen = max([len(k) for k in column_names])
for col in column_names:
if args.debug:
logger.debug(f'checking {col} limit:{limit} ')
if not limit:
df = pd.DataFrame(session.execute(text(f'select {col} from torqlogs where fileid={fileid}')).all())
else:
df = pd.DataFrame(session.execute(text(f'select {col} from torqlogs where fileid={fileid} limit {limit}')).all())
try:
nulls = df.isnull().sum().values[0]
except (IndexError,AttributeError) as e:
logger.error(f'{type(e)} {e} {col=} ')
nulls = 0.0
# nullratio = len(df)/df.isnull().sum().values[0]
nr = 0.0
if nulls > 0:
try:
nr = len(df)/nulls
except (Exception, RuntimeError, ZeroDivisionError) as e:
logger.error(f'{type(e)} {e} {col=} {df.describe()}')
minval = df.min().values[0] or 0.0
mednval = df.median().values[0] or 0.0
meannval = df.mean().values[0] or 0.0
maxnval = df.max().values[0] or 0.0
print(f' {col:<{maxnlen}} nulls: {nulls:>3} nr: {nr:>3.3} {minval:>3.3} {mednval:>3.3} {meannval:>3.3} {maxnval:>3.3}')
def generate_torqdata(df: pd.DataFrame, session: sessionmaker = None, args: argparse.Namespace = None):
# generate torqdata from torqlogs
# df = pd.DataFrame([k.__dict__ for k in data])
time_cols = [df[k] for k in df.columns if "gpstime" in k or "devicetime" in k]
stats = {}
stats["timestats"] = get_time_stats(time_cols)
speed_cols = [df[k] for k in df.columns if "speed" in k]
stats["speedstats"] = get_speed_stats(speed_cols)
gps_cols = [df[k] for k in df.columns if "gps" in k]
stats["gpsstats"] = get_gps_stats(gps_cols)
cost_cols = [df[k] for k in df.columns if "cost" in k]
stats["coststats"] = get_cost_stats(cost_cols)
temp_cols = [df[k] for k in df.columns if "temp" in k]
stats["tempstats"] = get_temp_stats(temp_cols)
# gps_cols = [df[k] for k in df.columns if 'gps' in k]
# for c in gps_cols:
# stats[c.name] = {
# 'name':c.name, # f'{c.name}.mean':c.mean(), # f'{c.name}.max':c.max(), # f'{c.name}.mix':c.min(), # }
# # print(stats)
# cost_cols = [df[k] for k in df.columns if 'cost' in k]
# for c in cost_cols:
# stats[c.name] = {
# 'name':c.name, # f'{c.name}.mean':c.mean(), # f'{c.name}.max':c.max(), # f'{c.name}.mix':c.min(), # }
# # print(stats)
# temp_cols = [df[k] for k in df.columns if 'temp' in k]
# for c in temp_cols:
# stats[c.name] = {
# 'name':c.name, # f'{c.name}.mean':c.mean(), # f'{c.name}.max':c.max(), # f'{c.name}.mix':c.min(), # }
# #print(stats)
return stats
def Convert(lst):
# convert list to dict
res_dct = map(lambda i: (lst[i], lst[i + 1]), range(len(lst) - 1)[::2])
return dict(res_dct)
def convert_string_to_datetime(s: str):
"""
try to convert string to datetime, based on string length apply fmt
param s string with datetime
returns datetime object
"""
fmt_selector = len(s)
datetimeobject = s
try:
match fmt_selector:
case 20:
datetimeobject = datetime.strptime(s, fmt_20).astimezone(pytz.timezone("UTC"))
case 24:
datetimeobject = datetime.strptime(s, fmt_24).astimezone(pytz.timezone("UTC"))
case 26:
datetimeobject = datetime.strptime(s, fmt_26).astimezone(pytz.timezone("UTC"))
case 28:
datetimeobject = datetime.strptime(s, fmt_28).astimezone(pytz.timezone("UTC"))
case 30:
datetimeobject = datetime.strptime(s, fmt_30).astimezone(pytz.timezone("UTC"))
case 34:
datetimeobject = datetime.strptime(s, fmt_34).astimezone(pytz.timezone("UTC"))
case 36:
datetimeobject = datetime.strptime(s, fmt_36).astimezone(pytz.timezone("UTC"))
case _:
pass # logger.warning(f'could not match format for fmt_selector {fmt_selector} for {datecol} {f=}.\n sample:first= {df0[datecol][0]} middle= {df0[datecol][len(data)//2]} last= {df0[datecol][len(df0)-1]}\n')
except (ValueError, TypeError, KeyError) as e:
logger.error(f"dateconverter {type(e)} {e} {s=}")
finally:
return datetimeobject
def colreplacer(df):
# todo for checking try :
# test = [float(k) for k in data['enginecoolanttemperaturef'].values ] # raises exception if not float
# test = [float(k) for k in data[columntocheck].values ] # raises exception if not float
for col in df.columns:
# df[col] = df[col].replace('.',',')
df[col] = df[col].replace("-", 0)
df[col] = df[col].replace("Â", "")
df[col] = df[col].replace("â", "")
df[col] = df[col].replace("°", "")
df[col] = df[col].replace("₂", "")
df[col] = df[col].replace("∞", "")
df[col] = df[col].replace("£", "")
df[col] = df[col].replace("\n", "")
df[col] = df[col].replace("612508207723425200000000000000000000000", 0)
df[col] = df[col].replace("340282346638528860000000000000000000000", 0)
df[col] = df[col].replace("-3402823618710077500000000000000000000", 0)
df[col] = df[col].replace("6.125082077234252e+38", 0)
df[col] = df[col].replace("3.4028234663852886e+38", 0)
df[col] = df[col].replace("-5.481e-05", 0)
df[col] = df[col].replace("â\x88\x9e", 0)
# â\x88\x9e
# -5.481e-05
# 6.125082077234252e+38
# 3.4028234663852886e+38
# 6.125082077234252e+38
# 612508207723425200000000000000000000000
# df[col] = rcol
# data = df.fill_null(0).fill_nan(0)
# df = data.to_pandas()
# df1 = df.rename(columns=ncc)
def fix_bad_values(data: pd.DataFrame, f: str):
"""
search and replace bad values from databuffer
param: data dataframe, f filename (for ref)
returns fixed data if possible, else orginal
"""
# fixed_data = pd.DataFrame()
# 'â\x88\x9e' found in tracklog-2021-jul-05_17-53-16.csv
# badhex
# C3 A2 C2 88 C2 9E
# C3 82 C2 B0
# C3 A2 C2 82 C2 82
# C3 82 C2 B0
# °
try:
# needs_fix = [k for k in data.columns if '-' in data[k].values]
for c in data:
data[c] = data[c].replace("-", 0)
data[c] = data[c].replace("∞", 0)
data[c] = data[c].replace("NaN", 0)
data[c] = data[c].replace("6.125082077234252e+38", 0)
# 6.125082077234252e+38
# fixcount = 0
# for fix in needs_fix:
# data[fix] = data[fix].replace('340282346638528860000000000000000000000',0)
# data[fix] = data[fix].replace('-3402823618710077500000000000000000000',0)
# data[fix] = data[fix].replace('612508207723425200000000000000000000000',0)
# data[fix] = data[fix].replace('â\x88\x9e',0)
# fixcount += 1
# if fixcount>0:
# logger.debug(f'fixed {fixcount} things in {f}')
return data
except Exception as e:
logger.error(f"error in fixer: {type(e)} {e} for {f}")
raise e
def read_profile(profile_fn: str):
# read profile.properties file, to extract some data
tripdate = None
try:
with open(profile_fn, "r") as f:
data = f.readlines()
if len(data) == 8 or len(data) == 6:
# pdata_date = str(data[1][1:]).strip('\n')
# tripdate = datetime.strptime(pdata_date ,'%a %b %d %H:%M:%S %Z%z %Y')
if len(data[1]) == 30:
tripdate = datetime.strptime((str(data[1][1:]).strip("\n")), fmt_30)
elif len(data[1]) == 36:
# Tue May 17 17:55:43 GMT+02:00 2022
tripdate = datetime.strptime((str(data[1][1:]).strip("\n")), fmt_36)
else:
logger.warning(f"unknown date format {data[1]}")
tripdate = data[1]
else:
logger.warning(f"profile.properties file {profile_fn} has {len(data)} lines {data}")
except Exception as e:
logger.error(f"unhandled {type(e)} {e}")
finally:
return tripdate
def transfer_older_logs(args):
# transfer old tripLogs to new format
# todo read more info from profile.properties file
#
old_dirs = [
k
for k in Path(args.oldlogpath).glob("*")
if k.is_dir() and len(str(k.name)) == 13
]
# pick only directories with 13 digits
transfered_logs = []
# to keep track of the logs that have been transfered
logger.debug(f"found {len(old_dirs)} old tripLogs")
for od in old_dirs:
profile_fn = os.path.join(od, "profile.properties")
# old_timestamp = datetime.fromtimestamp(int(od.name)/1000).strftime("%Y-%b-%d_%H-%M-%S")
if Path(profile_fn).exists():
# read profile.properties file, to extract some data
profiledata = read_profile(profile_fn)
else:
logger.warning(f"no profile.properties file found in {od}")
profiledata = None
# rename log file to new format
if profiledata:
trip_date = profiledata.strftime("%Y-%b-%d_%H-%M-%S")
new_log_fn = Path(os.path.join(args.logpath, f"trackLog-{trip_date}.csv"))
if len(new_log_fn.name) != 33:
logger.warning(f"new log filename {new_log_fn} is not 33 chars long")
if Path(new_log_fn).exists():
logger.warning(f"file {new_log_fn} exists, skipping")
else:
# print(f'od: {od.name} -> {old_timestamp} pd: {profiledata} td: {trip_date}')
old_log_name = os.path.join(od, "trackLog.csv")
logger.debug(f"move/copy from {old_log_name} to {new_log_fn}")
try:
shutil.copyfile(old_log_name, new_log_fn)
transfered_logs.append(new_log_fn)
except Exception as e:
logger.error(f"Error {type(e)} {e} {old_log_name} -> {new_log_fn}")
else:
logger.warning(f"could not extract profiledata from {profile_fn}")
logger.info(f"transfered {len(transfered_logs)} of {len(old_dirs)} old tripLogs to {args.logpath}")
return transfered_logs
if __name__ == "__main__":
pass