forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathop_gen.py
executable file
·245 lines (215 loc) · 7.39 KB
/
op_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python3
import argparse
from textwrap import dedent
from subprocess import call
def parse_lines(lines):
# States
EMPTY = 0
OP = 1
MACRO = 2
parse_state = EMPTY
# Preprocess the macros
curr_macro = ""
macros = {}
index = 0
while index < len(lines):
line = lines[index]
if line.lower().startswith("macro"):
assert parse_state == EMPTY
macro_line = line.split(" ")
# Support macros that look like attributes
# e.g. macro - CONV_LIKE
curr_macro = " ".join(macro_line[1:])
assert curr_macro not in macros, 'Macro "{}" defined twice.'.format(
curr_macro
)
macros[curr_macro] = []
parse_state = MACRO
lines = lines[:index] + lines[index + 1 :]
continue
elif line.lower().startswith("endmacro"):
assert parse_state == MACRO
parse_state = EMPTY
lines = lines[:index] + lines[index + 1 :]
continue
elif parse_state == MACRO:
macros[curr_macro].append(line)
lines = lines[:index] + lines[index + 1 :]
continue
index += 1
index = 0
while index < len(lines):
line = lines[index]
if line in macros:
lines = lines[:index] + macros[line] + lines[index + 1 :]
index += len(macros[line]) - 1
index += 1
# Now parse the file
curr_op = ""
# dict of the form
# opName : { attributes: [], ... }
ops = {}
# To preserve parsing order for dependencies (for things like init_from)
op_list = []
for line in lines:
if not len(line):
continue
if line[0] == "-":
assert parse_state is OP
attr = [_.strip() for _ in line[1:].split(":")]
assert attr[0][0].isupper()
if len(attr) == 2: # attribute : type
ops[curr_op]["attributes"].append((attr[0], attr[1]))
elif len(attr) == 3: # attribute : type
ops[curr_op]["attributes"].append((attr[0], attr[1], attr[2]))
else:
op = [l.strip() for l in line.split(":")]
assert len(op[0].split(" ")) == 1
parse_state = OP
curr_op = op[0]
assert curr_op not in ops
ops[curr_op] = {}
op_list.append(curr_op)
if len(op) > 1:
ops[curr_op]["init_from"] = [op[1]]
ops[curr_op]["attributes"] = []
return ops, op_list
def gen_class(op, op_def):
attributes = op_def["attributes"]
attribute_args = []
default_init = "NeuralNetOperator(NNKind::{op})".format(op=op)
attribute_init = [default_init]
attribute_declarations = []
attribute_getters = []
attribute_setters = []
for attr in attributes:
lower_name = attr[0][0].lower() + attr[0][1:]
private_name = lower_name + "_"
default_arg = "" if len(attr) < 3 else " = {}".format(attr[2])
name = attr[0]
t = attr[1]
attr_arg = "{type} {lower_name}".format(
type=t, lower_name=lower_name + default_arg
)
attr_init = "{private_name}({lower_name})".format(
private_name=private_name, lower_name=lower_name)
attr_declare = "{type} {private_name};".format(
type=t, private_name=private_name)
attr_get = dedent(
"""
{type} get{name}() const {{
return {private_name};
}}
""".format(
type=t, name=name, private_name=private_name
)
)
attr_set = dedent(
"""
void set{name}({type} {lower_name}) {{
{private_name} = {lower_name};
}}
""".format(
type=t, name=name, private_name=private_name, lower_name=lower_name
)
)
attribute_args.append(attr_arg)
attribute_init.append(attr_init)
attribute_declarations.append(attr_declare)
attribute_getters.append(attr_get)
attribute_setters.append(attr_set)
extra_init = ""
if "init_from" in op_def:
for other_op in op_def["init_from"]:
lower_other_op = other_op[0].lower() + other_op[1:]
other_init = [default_init]
for attr in attributes:
lower_name = attr[0][0].lower() + attr[0][1:]
private_name = lower_name + "_"
other_init.append(
"{private_name}({other_op}.get{name}())".format(
name=attr[0], private_name=private_name, other_op=lower_other_op
)
)
init = dedent(
"""
{op}(const {other_op}& {lower_other_op}) :
{other_init} {{}}
""".format(
op=op,
other_op=other_op,
lower_other_op=lower_other_op,
other_init=",\n ".join(other_init),
)
)
extra_init += init
return dedent(
"""
class {op} : public NeuralNetOperator {{
public:
{op}({attribute_args}) :
{attribute_init} {{}}
{extra_init}
~{op}() {{}}
NOMNIGRAPH_DEFINE_NN_RTTI({op});
{getters}{setters}
private:
{attribute_declarations}
}};
""".format(
op=op,
extra_init=extra_init,
getters="".join(attribute_getters),
setters="".join(attribute_setters),
attribute_args=",\n".join(attribute_args),
attribute_init=",\n".join(attribute_init),
attribute_declarations="\n".join(attribute_declarations),
)
)
def gen_classes(ops, op_list):
f = ""
for op in op_list:
f += gen_class(op, ops[op])
return f
def gen_enum(op_list):
return ",\n".join([op for op in op_list]) + "\n"
def gen_names(op_list):
f = ""
for op in op_list:
f += dedent(
"""
case NNKind::{name}:
return \"{name}\";
""".format(
name=op
)
)
return f
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate op files.")
parser.add_argument("--install_dir", help="installation directory")
parser.add_argument("--source_def", help="ops.def", action="append")
args = parser.parse_args()
install_dir = args.install_dir
sources = args.source_def
lines = []
for source in sources:
with open(source, "rb") as f:
lines_tmp = f.readlines()
lines += [l.strip().decode("utf-8") for l in lines_tmp]
ops, op_list = parse_lines(lines)
with open(install_dir + "/OpClasses.h", "wb") as f:
f.write(gen_classes(ops, op_list).encode("utf-8"))
with open(install_dir + "/OpNames.h", "wb") as f:
f.write(gen_names(op_list).encode("utf-8"))
with open(install_dir + "/OpEnum.h", "wb") as f:
f.write(gen_enum(op_list).encode("utf-8"))
try:
cmd = ["clang-format", "-i", install_dir + "/OpClasses.h"]
call(cmd)
cmd = ["clang-format", "-i", install_dir + "/OpNames.h"]
call(cmd)
cmd = ["clang-format", "-i", install_dir + "/OpEnum.h"]
call(cmd)
except Exception:
pass