From 5a712052d87bf6e506a755b3a54252d5191bd13a Mon Sep 17 00:00:00 2001
From: kyleabeauchamp
Date: Fri, 27 Feb 2015 15:10:00 -0500
Subject: [PATCH] Updates to slides
---
base.html | 15 ++++++++--
index.html | 84 +++++++++++++++++++++++++---------------------------
js/slides.js | 23 ++++++++++++--
slides.md | 63 +++++++++++++++------------------------
4 files changed, 98 insertions(+), 87 deletions(-)
diff --git a/base.html b/base.html
index b017f8a..5b3dcee 100644
--- a/base.html
+++ b/base.html
@@ -26,7 +26,8 @@
-
+
+
-
+
+
+ \[
+ \definecolor{data}{RGB}{18,110,213}
+ \definecolor{unknown}{RGB}{217,86,16}
+ \definecolor{learned}{RGB}{175,114,176}
+ \]
+
diff --git a/index.html b/index.html
index d6bd354..d304e8c 100644
--- a/index.html
+++ b/index.html
@@ -13,7 +13,7 @@
- Conformational Dynamics in Mixtape
+ Conformational Dynamics in MSMBuilder3
@@ -26,7 +26,8 @@
-
+
+
-
+
+
+ \[
+ \definecolor{data}{RGB}{18,110,213}
+ \definecolor{unknown}{RGB}{217,86,16}
+ \definecolor{learned}{RGB}{175,114,176}
+ \]
+
@@ -52,9 +63,9 @@
- Conformational Dynamics in Mixtape
+ Conformational Dynamics in MSMBuilder3
- Kyle A. Beauchamp September 3, 2014
+ Kyle A. Beauchamp Updated Feb. 27, 2015 (msmbuilder v3.1)
@@ -140,7 +151,7 @@
- Mixtape: Philosophy
+ MSMBuilder: Philosophy
Let's build on scikit-learn idioms:
@@ -162,14 +173,14 @@
->>> import mixtape.cluster
->>> clusterer = mixtape.cluster.KMeans(n_clusters=4)
+>>> import msmbuilder.cluster
+>>> clusterer = msmbuilder.cluster.KMeans(n_clusters=4)
->>> import mixtape.tica
->>> tica = mixtape.tica.tICA(n_components=3)
+>>> import msmbuilder.decomposition
+>>> tica = msmbuilder.decomposition.tICA(n_components=3)
->>> import mixtape.markovstatemodel
->>> msm = mixtape.markovstatemodel.MarkovStateModel()
+>>> import msmbuilder.msm
+>>> msm = msmbuilder.msm.MarkovStateModel()
@@ -188,11 +199,11 @@
->>> import mixtape.cluster
+>>> import msmbuilder.cluster
>>> trajectories = [np.random.normal(size=(100, 3))]
->>> clusterer = mixtape.cluster.KMeans(n_clusters=4, n_init=10)
+>>> clusterer = msmbuilder.cluster.KMeans(n_clusters=4, n_init=10)
>>> clusterer.fit(trajectories)
>>> clusterer.cluster_centers_
@@ -217,11 +228,11 @@
->>> import mixtape.markovstatemodel
+>>> import msmbuilder.msm
>>> trajectories = [np.array([0, 0, 0, 1, 1, 1, 0, 0])]
->>> msm = mixtape.markovstatemodel.MarkovStateModel()
+>>> msm = msmbuilder.msm.MarkovStateModel()
>>> msm.fit(trajectories)
>>> msm.transmat_
@@ -243,11 +254,11 @@
->>> import mixtape.cluster
+>>> import msmbuilder.cluster
>>> trajectories = [np.random.normal(size=(100, 3))]
->>> clusterer = mixtape.cluster.KMeans(n_clusters=4, n_init=10)
+>>> clusterer = msmbuilder.cluster.KMeans(n_clusters=4, n_init=10)
>>> clusterer.fit(trajectories)
>>> Y = clusterer.transform(trajectories)
@@ -271,13 +282,13 @@
->>> import mixtape.cluster, mixtape.markovstatemodel
+>>> import msmbuilder.cluster, msmbuilder.msm
>>> from sklearn.pipeline import Pipeline
>>> trajectories = [np.random.normal(size=(100, 3))]
->>> clusterer = mixtape.cluster.KMeans(n_clusters=2, n_init=10)
->>> msm = mixtape.markovstatemodel.MarkovStateModel()
+>>> clusterer = msmbuilder.cluster.KMeans(n_clusters=2, n_init=10)
+>>> msm = msmbuilder.msm.MarkovStateModel()
>>> pipeline = Pipeline([("clusterer", clusterer), ("msm", msm)])
>>> pipeline.fit(trajectories)
@@ -305,8 +316,8 @@
->>> from mixtape.featurizer import DihedralFeaturizer
->>> from mixtape.datasets import fetch_alanine_dipeptide
+>>> from msmbuilder.featurizer import DihedralFeaturizer
+>>> from msmbuilder.example_datasets import fetch_alanine_dipeptide
>>> from matplotlib.pyplot import hexbin, plot
>>> trajectories = fetch_alanine_dipeptide()["trajectories"]
@@ -349,10 +360,10 @@
>>> import mdtraj as md
->>> from mixtape.featurizer import DihedralFeaturizer
->>> from mixtape.datasets import fetch_alanine_dipeptide
->>> from mixtape.cluster import KCenters
->>> from mixtape.markovstatemodel import MarkovStateModel
+>>> from msmbuilder.featurizer import DihedralFeaturizer
+>>> from msmbuilder.example_datasets import fetch_alanine_dipeptide
+>>> from msmbuilder.cluster import KCenters
+>>> from msmbuilder.msm import MarkovStateModel
>>> from sklearn.pipeline import Pipeline
>>> trajectories = fetch_alanine_dipeptide()["trajectories"]
@@ -412,27 +423,14 @@
-
-
-
- Model Scoring with GMRQ
- We can improve a lot over KMeans.
-
-
-
-
-
-
-
-
- Thanks!
- Contributors: Robert M., Kyle B., Bharath R., Matt H., Steve K., Gert K., Muneeb S.
+
+
- www mixtape docs github mixtape
+
diff --git a/js/slides.js b/js/slides.js
index e633d58..9446329 100644
--- a/js/slides.js
+++ b/js/slides.js
@@ -1,6 +1,23 @@
-require(['order!modernizr.custom.45394',
- 'order!prettify/prettify', 'order!hammer', 'order!slide-controller',
- 'order!slide-deck'], function(someModule) {
+requirejs.config({
+ baseUrl: "js/",
+ paths: {
+ modernizer: "modernizr.custom.45394",
+ prettify: "https://cdnjs.cloudflare.com/ajax/libs/prettify/r298/prettify.min",
+ underscore: "https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.7.0/underscore-min",
+ hammer: "https://cdnjs.cloudflare.com/ajax/libs/hammer.js/0.6.4/hammer.min"
+ },
+ shim: {
+ 'slide-deck' : {
+ deps: ['modernizer', 'hammer', 'underscore'],
+ exports: 'SlideDeck',
+ },
+ 'modernizer' : 'Modernizr',
+ 'hammer': {exports: 'Hammer'},
+ }
+});
+
+require(['modernizer', 'prettify', 'hammer', 'slide-controller',
+ 'slide-deck'],function(someModule) {
var initElasticity = function() {
var resize = function() {
diff --git a/slides.md b/slides.md
index 8b79c92..e45e152 100644
--- a/slides.md
+++ b/slides.md
@@ -1,10 +1,6 @@
-% title: Conformational Dynamics in Mixtape
+% title: Conformational Dynamics in MSMBuilder3
% author: Kyle A. Beauchamp
-% author: September 3, 2014
-% thankyou: Thanks!
-% thankyou_details: Contributors: Robert M., Kyle B., Bharath R., Matt H., Steve K., Gert K., Muneeb S.
-% contact: www mixtape docs
-% contact: github mixtape
+% author: Updated Feb. 27, 2015 (msmbuilder v3.1)
---
title: Old-School Analysis of MD Data
@@ -63,7 +59,7 @@ title: Enter Data Science
---
-title: Mixtape: Philosophy
+title: MSMBuilder: Philosophy
Let's build on [scikit-learn](http://scikit-learn.org/stable/) idioms:
@@ -80,14 +76,14 @@ title: Everything is a Model()
!
->>> import mixtape.cluster
->>> clusterer = mixtape.cluster.KMeans(n_clusters=4)
+>>> import msmbuilder.cluster
+>>> clusterer = msmbuilder.cluster.KMeans(n_clusters=4)
->>> import mixtape.tica
->>> tica = mixtape.tica.tICA(n_components=3)
+>>> import msmbuilder.decomposition
+>>> tica = msmbuilder.decomposition.tICA(n_components=3)
->>> import mixtape.markovstatemodel
->>> msm = mixtape.markovstatemodel.MarkovStateModel()
+>>> import msmbuilder.msm
+>>> msm = msmbuilder.msm.MarkovStateModel()
@@ -104,11 +100,11 @@ title: Models fit()
data!
->>> import mixtape.cluster
+>>> import msmbuilder.cluster
>>> trajectories = [np.random.normal(size=(100, 3))]
->>> clusterer = mixtape.cluster.KMeans(n_clusters=4, n_init=10)
+>>> clusterer = msmbuilder.cluster.KMeans(n_clusters=4, n_init=10)
>>> clusterer.fit(trajectories)
>>> clusterer.cluster_centers_
@@ -130,11 +126,11 @@ title: fit()
acts on lists of sequences
->>> import mixtape.markovstatemodel
+>>> import msmbuilder.msm
>>> trajectories = [np.array([0, 0, 0, 1, 1, 1, 0, 0])]
->>> msm = mixtape.markovstatemodel.MarkovStateModel()
+>>> msm = msmbuilder.msm.MarkovStateModel()
>>> msm.fit(trajectories)
>>> msm.transmat_
@@ -152,11 +148,11 @@ title: Models transform()
data!
->>> import mixtape.cluster
+>>> import msmbuilder.cluster
>>> trajectories = [np.random.normal(size=(100, 3))]
->>> clusterer = mixtape.cluster.KMeans(n_clusters=4, n_init=10)
+>>> clusterer = msmbuilder.cluster.KMeans(n_clusters=4, n_init=10)
>>> clusterer.fit(trajectories)
>>> Y = clusterer.transform(trajectories)
@@ -175,13 +171,13 @@ title: Pipeline()
concatenates models!
->>> import mixtape.cluster, mixtape.markovstatemodel
+>>> import msmbuilder.cluster, msmbuilder.msm
>>> from sklearn.pipeline import Pipeline
>>> trajectories = [np.random.normal(size=(100, 3))]
->>> clusterer = mixtape.cluster.KMeans(n_clusters=2, n_init=10)
->>> msm = mixtape.markovstatemodel.MarkovStateModel()
+>>> clusterer = msmbuilder.cluster.KMeans(n_clusters=2, n_init=10)
+>>> msm = msmbuilder.msm.MarkovStateModel()
>>> pipeline = Pipeline([("clusterer", clusterer), ("msm", msm)])
>>> pipeline.fit(trajectories)
@@ -206,8 +202,8 @@ Featurizers wrap MDTraj functions via the `transform()` function
->>> from mixtape.featurizer import DihedralFeaturizer
->>> from mixtape.datasets import fetch_alanine_dipeptide
+>>> from msmbuilder.featurizer import DihedralFeaturizer
+>>> from msmbuilder.example_datasets import fetch_alanine_dipeptide
>>> from matplotlib.pyplot import hexbin, plot
>>> trajectories = fetch_alanine_dipeptide()["trajectories"]
@@ -242,10 +238,10 @@ title: Old-school MSMs
>>> import mdtraj as md
->>> from mixtape.featurizer import DihedralFeaturizer
->>> from mixtape.datasets import fetch_alanine_dipeptide
->>> from mixtape.cluster import KCenters
->>> from mixtape.markovstatemodel import MarkovStateModel
+>>> from msmbuilder.featurizer import DihedralFeaturizer
+>>> from msmbuilder.example_datasets import fetch_alanine_dipeptide
+>>> from msmbuilder.cluster import KCenters
+>>> from msmbuilder.msm import MarkovStateModel
>>> from sklearn.pipeline import Pipeline
>>> trajectories = fetch_alanine_dipeptide()["trajectories"]
@@ -294,14 +290,3 @@ for fold, (train_index, test_index) in enumerate(cv):
Also scikit-learn's GridSearchCV
and RandomizedSearchCV
.
----
-title: Model Scoring with GMRQ
-subtitle: We can improve a lot over KMeans.
-
-
-
-
-
-
-
-