-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver_autogluon_SOC.py
45 lines (35 loc) · 1.35 KB
/
server_autogluon_SOC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from autogluon.tabular import TabularDataset, TabularPredictor
import numpy as np
import math
import matplotlib.pyplot as plt
# Import and preview training data
train_data = TabularDataset('Data/phil_socdata_train.csv')
train_data.head()
label = 'SOC'
# Model training with AutoGluon
predictor = TabularPredictor(label=label).fit(
train_data,
#time_limit = 10*60,
presets='best_quality',
verbosity=2
)
# import test data from Data/phil_socdata_test.csv, normalize (between 0 and 1) and standardize
test_data1 = TabularDataset(f'Data/phil_socdata_test1.csv')
test_data2 = TabularDataset(f'Data/phil_socdata_test2.csv')
y_pred1= predictor.predict(test_data1.drop(columns=[label]))
y_pred2= predictor.predict(test_data2.drop(columns=[label]))
#plots the predicted vs actual values of the top performing model using matplotlib
plt.plot(y_pred1, label="Predictions")
plt.plot(test_data1[label], label="True Values")
plt.legend()
plt.savefig('Data/phil_socdata_test1.png')
plt.plot(y_pred2, label="Predictions")
plt.plot(test_data2[label], label="True Values")
plt.legend()
plt.savefig('Data/phil_socdata_test2.png')
mse_test = np.mean(((y_pred1 - test_data1[label])**2))
rmse_test = math.sqrt(mse_test)
print("Test data 1 RMSE", rmse_test)
mse_test = np.mean(((y_pred2 - test_data2[label])**2))
rmse_test = math.sqrt(mse_test)
print("Test data 2 RMSE", rmse_test)