forked from bthicks/OMR-Grader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrader.py
304 lines (247 loc) · 10.1 KB
/
grader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import sys
import argparse
import json
import re
import cv2 as cv
from imutils.perspective import four_point_transform
import pyzbar.pyzbar as pyzbar
import config_parser
from test_box import TestBox
import utils
class Grader:
def find_page(self, im):
"""
Finds and returns the test box within a given image.
Args:
im (numpy.ndarray): An ndarray representing the entire test image.
Returns:
numpy.ndarray: An ndarray representing the test box in the image.
"""
# Convert image to grayscale then blur to better detect contours.
imgray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
threshold = utils.get_threshold(imgray)
# Find contour for entire page.
contours, _ = cv.findContours(threshold, cv.RETR_EXTERNAL,
cv.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv.contourArea, reverse=True)
if len(contours) > 0:
# Approximate the contour.
for contour in contours:
peri = cv.arcLength(contour, True)
approx = cv.approxPolyDP(contour, 0.02 * peri, True)
# Verify that contour has four corners.
if len(approx) == 4:
page = approx
break
else:
return None
# Apply perspective transform to get top down view of page.
return four_point_transform(imgray, page.reshape(4, 2))
def decode_qr(self, im):
"""
Finds and decodes the QR code inside of a test image.
Args:
im (numpy.ndarray): An ndarray representing the entire test image.
Returns:
pyzbar.Decoded: A decoded QR code object.
"""
# Increase image contrast to better identify QR code.
_, new_page = cv.threshold(im, 127, 255, cv.THRESH_BINARY)
decoded_objects = pyzbar.decode(new_page)
if not decoded_objects:
return None
else:
return decoded_objects[0]
def image_is_upright(self, page, config):
"""
Checks if an image is upright, based on the coordinates of the QR code
in the image.
Args:
page (numpy.ndarray): An ndarray representing the test image.
config (dict): A dictionary containing the config file values.
Returns:
bool: True if image is upright, False otherwise.
"""
qr_code = self.decode_qr(page)
qr_x = qr_code.rect.left
qr_y = qr_code.rect.top
x_error = config['x_error']
y_error = config['y_error']
if ((config['qr_x'] - x_error <= qr_x <= config['qr_x'] + x_error) and
(config['qr_y'] - y_error <= qr_y <= config['qr_y'] + y_error)):
return True
else:
return False
def upright_image(self, page, config):
"""
Rotates an image by 90 degree increments until it is upright.
Args:
page (numpy.ndarray): An ndarray representing the test image.
config (dict): A dictionary containing the config file values.
Returns:
page (numpy.ndarray): An ndarray representing the upright test
image.
"""
if self.image_is_upright(page, config):
return page
else:
for _ in range(3):
page = utils.rotate_image(page, 90)
if self.image_is_upright(page, config):
return page
return None
def scale_config_r(self, config, x_scale, y_scale, re_x, re_y):
"""
Recursively scales lists within lists of values in the config dictionary
based on the width and height of the image being graded.
Args:
config (dict): An unscaled coordinate mapping read from the
configuration file.
x_scale (int): Factor to scale x coordinates by.
y_scale (int): Factor to scale y coordinates by.
re_x (pattern): Regex pattern to match x coordinate key names.
re_y (pattern): Regex pattern to match y coordinate key names.
Returns:
config (dict): A scaled coordinate mapping read from the
configuration file.
"""
for key, val in config.items():
if isinstance(val, list):
for config in val:
self.scale_config_r(config, x_scale, y_scale, re_x, re_y)
if re_x.search(key) or key == 'bubble_width':
config[key] = val * x_scale
elif re_y.search(key) or key == 'bubble_height':
config[key] = val * y_scale
def scale_config(self, config, width, height):
"""
Scales the values in the config dictionary based on the width and height
of the image being graded.
Args:
config (dict): An unscaled coordinate mapping read from the
configuration file.
width (int): Width of the actual test image.
height (int): Height of the actual test image.
"""
x_scale = width / config['page_width']
y_scale = height / config['page_height']
# Regex to match strings like x, qr_x, and x_min.
re_x = re.compile('(_|^)x(_|$)')
re_y = re.compile('(_|^)y(_|$)')
self.scale_config_r(config, x_scale, y_scale, re_x, re_y)
def grade(self, image_name, verbose_mode, debug_mode, scale):
"""
Grades a test image and outputs the result to stdout as a JSON object.
Args:
image_name (str): Filepath to the test image to be graded.
verbose_mode (bool): True to run program in verbose mode, False
otherwise.
debug_mode (bool): True to run program in debug mode, False
otherwise.
scale (str): Factor to scale image slices by.
"""
# Initialize dictionary to be returned.
data = {
'status' : 0,
'error' : ''
}
# Cast str to float for scale.
if scale is None:
scale = 1.0
else:
try:
scale = float(scale)
except ValueError:
data['status'] = 1
data['error'] = f'Scale {scale} must be of type float'
return json.dump(data, sys.stdout)
# Verify that scale is positive.
if scale <= 0:
data['status'] = 1
data['error'] = f'Scale {scale} must be positive'
return json.dump(data, sys.stdout)
# Verify that the filepath leads to a .png
if not (image_name.endswith('.png')):
data['status'] = 1
data['error'] = f'File {image_name} must be of type .png'
return json.dump(data, sys.stdout)
# Load image.
im = cv.imread(image_name)
if im is None:
data['status'] = 1
data['error'] = f'Image {image_name} not found'
return json.dump(data, sys.stdout);
# Find test page within image.
page = self.find_page(im)
if page is None:
data['status'] = 1
data['error'] = f'Page not found in {image_name}'
return json.dump(data, sys.stdout);
# Decode QR code, which will contain path to configuration file.
qr_code = self.decode_qr(page)
if qr_code is None:
data['status'] = 1
data['error'] = f'QR code not found in {image_name}'
return json.dump(data, sys.stdout);
else:
config_fname = qr_code.data.decode('utf-8')
config_fname = (os.path.dirname(os.path.abspath(sys.argv[0]))
+ '/config/6q.json')
# Read config file into dictionary and scale values. Check for duplicate
# keys with object pairs hook.
try:
with open(config_fname) as file:
config = json.load(file,
object_pairs_hook=config_parser.duplicate_key_check)
except FileNotFoundError:
data['status'] = 1
data['error'] = f'Configuration file {qrData} not found'
return json.dump(data, sys.stdout)
# Parse config file.
parser = config_parser.Parser(config, config_fname)
status, error = parser.parse()
if status == 1:
data['status'] = 1
data['error'] = error
return json.dump(data, sys.stdout)
# Scale config values based on page size.
self.scale_config(config, page.shape[1], page.shape[0])
# Rotate page until upright.
page = self.upright_image(page, config)
if page is None:
data['status'] = 1
data['error'] = f'Could not upright page in {image_name}'
return json.dump(data, sys.stdout);
# Grade each test box and add result to data.
for box_config in config['boxes']:
box_config['x_error'] = config['x_error']
box_config['y_error'] = config['y_error']
box_config['bubble_width'] = config['bubble_width']
box_config['bubble_height'] = config['bubble_height']
box = TestBox(page, box_config, verbose_mode, debug_mode, scale)
data[box.name] = box.grade()
# Output result as a JSON object to stdout.
json.dump(data, sys.stdout)
print()
# For debugging.
return json.dumps(data)
def main():
"""
Parses command line arguments and grades the specified test.
"""
# Parse the arguments.
ap = argparse.ArgumentParser()
ap.add_argument('-i', '--image', required=True,
help='path to the input image')
ap.add_argument('-v', action='store_true', required=False,
help='enable verbose mode')
ap.add_argument('-d', action='store_true', required=False,
help='enable debug mode')
ap.add_argument('-s', '--scale', required=False, help='scale image slices')
args = vars(ap.parse_args())
# Grade test.
grader = Grader()
return grader.grade(args['image'], args['v'], args['d'], args['scale'])
if __name__ == '__main__':
main()