forked from opencv/opencv_zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminisupervisely.py
202 lines (157 loc) · 6.55 KB
/
minisupervisely.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import cv2 as cv
import numpy as np
from tqdm import tqdm
class MiniSupervisely :
'''
Refer to https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.7/paddleseg/core/val.py
for official evaluation implementation.
'''
def __init__(self, root) :
self.root = root
self.val_path = os.path.join(root, 'val.txt')
self.image_set = self.load_data(self.val_path)
self.num_classes = 2
self.miou = -1
self.class_miou = -1
self.acc = -1
self.class_acc = -1
@property
def name(self):
return self.__class__.__name__
def load_data(self, val_path) :
"""
Load validation image set from val.txt file
Args :
val_path (str) : path to val.txt file
Returns :
image_set (list) : list of image path of input and expected image
"""
image_set = []
with open(val_path, 'r') as f :
for line in f.readlines() :
image_set.append(line.strip().split())
return image_set
def eval(self, model) :
"""
Evaluate model on validation set
Args :
model (object) : PP_HumanSeg model object
"""
intersect_area_all = np.zeros([1], dtype=np.int64)
pred_area_all = np.zeros([1], dtype=np.int64)
label_area_all = np.zeros([1], dtype=np.int64)
pbar = tqdm(self.image_set)
pbar.set_description(
"Evaluating {} with {} val set".format(model.name, self.name))
for input_image, expected_image in pbar :
input_image = cv.imread(os.path.join(self.root, input_image)).astype('float32')
expected_image = cv.imread(os.path.join(self.root, expected_image), cv.IMREAD_GRAYSCALE)[np.newaxis, :, :]
output_image = model.infer(input_image)
intersect_area, pred_area, label_area = self.calculate_area(
output_image.astype('uint32'),
expected_image.astype('uint32'),
self.num_classes)
intersect_area_all = intersect_area_all + intersect_area
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
self.class_iou, self.miou = self.mean_iou(intersect_area_all, pred_area_all,
label_area_all)
self.class_acc, self.acc = self.accuracy(intersect_area_all, pred_area_all)
def get_results(self) :
"""
Get evaluation results
Returns :
miou (float) : mean iou
class_miou (list) : iou on all classes
acc (float) : mean accuracy
class_acc (list) : accuracy on all classes
"""
return self.miou, self.class_miou, self.acc, self.class_acc
def print_result(self) :
"""
Print evaluation results
"""
print("Mean IoU : ", self.miou)
print("Mean Accuracy : ", self.acc)
print("Class IoU : ", self.class_iou)
print("Class Accuracy : ", self.class_acc)
def calculate_area(self,pred, label, num_classes, ignore_index=255):
"""
Calculate intersect, prediction and label area
Args:
pred (Tensor): The prediction by model.
label (Tensor): The ground truth of image.
num_classes (int): The unique number of target classes.
ignore_index (int): Specifies a target value that is ignored. Default: 255.
Returns:
Tensor: The intersection area of prediction and the ground on all class.
Tensor: The prediction area on all class.
Tensor: The ground truth area on all class
"""
if len(pred.shape) == 4:
pred = np.squeeze(pred, axis=1)
if len(label.shape) == 4:
label = np.squeeze(label, axis=1)
if not pred.shape == label.shape:
raise ValueError('Shape of `pred` and `label should be equal, '
'but there are {} and {}.'.format(pred.shape,
label.shape))
mask = label != ignore_index
pred_area = []
label_area = []
intersect_area = []
#iterate over all classes and calculate their respective areas
for i in range(num_classes):
pred_i = np.logical_and(pred == i, mask)
label_i = label == i
intersect_i = np.logical_and(pred_i, label_i)
pred_area.append(np.sum(pred_i.astype('int32')))
label_area.append(np.sum(label_i.astype('int32')))
intersect_area.append(np.sum(intersect_i.astype('int32')))
return intersect_area, pred_area, label_area
def mean_iou(self,intersect_area, pred_area, label_area):
"""
Calculate iou.
Args:
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes.
pred_area (Tensor): The prediction area on all classes.
label_area (Tensor): The ground truth area on all classes.
Returns:
np.ndarray: iou on all classes.
float: mean iou of all classes.
"""
intersect_area = np.array(intersect_area)
pred_area = np.array(pred_area)
label_area = np.array(label_area)
union = pred_area + label_area - intersect_area
class_iou = []
for i in range(len(intersect_area)):
if union[i] == 0:
iou = 0
else:
iou = intersect_area[i] / union[i]
class_iou.append(iou)
miou = np.mean(class_iou)
return np.array(class_iou), miou
def accuracy(self,intersect_area, pred_area):
"""
Calculate accuracy
Args:
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes..
pred_area (Tensor): The prediction area on all classes.
Returns:
np.ndarray: accuracy on all classes.
float: mean accuracy.
"""
intersect_area = np.array(intersect_area)
pred_area = np.array(pred_area)
class_acc = []
for i in range(len(intersect_area)):
if pred_area[i] == 0:
acc = 0
else:
acc = intersect_area[i] / pred_area[i]
class_acc.append(acc)
macc = np.sum(intersect_area) / np.sum(pred_area)
return np.array(class_acc), macc