-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboiler_control.cpp
387 lines (319 loc) · 9.18 KB
/
boiler_control.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#include <arduino.h>
#include "hwsetup.h"
#include "piec_sensors.h"
#include "boiler_control.h"
#include "global_variables.h"
#include "digitalWriteFast.h"
#define KICKSTART_MIN 10 //minimum pulses/sec - below that we run a kickstart
struct tPowerControlPin {
uint8_t Pin;
uint8_t Mask;
bool Enabled;
bool On;
};
//flags for synced turning on/off of port K bits
volatile uint8_t g_powerFlags = 0;
volatile uint8_t g_powerBits = 0;
int8_t g_BlowerPowerCorrection = 0; //blower power adjustment for current burn state. we adjust this adjustment when correcting flow.
//PINTK, PO
#define POWER_PORT_MASK 0b11111111
tPowerControlPin pump_ctrl_pins[] = {
{HW_PUMP_CO1_CTRL_PIN, MASK_PUMP_CO1, false},
{HW_PUMP_CWU1_CTRL_PIN, MASK_PUMP_CWU1, false},
{HW_PUMP_CO2_CTRL_PIN, MASK_PUMP_CO2, false},
{HW_PUMP_CIRC_CTRL_PIN, MASK_PUMP_CIRC, false},
{HW_FEEDER_CTRL_PIN, MASK_FEEDER, true},
{HW_BLOWER_CTRL_PIN, MASK_BLOWER, true},
};
unsigned long g_FeederRunTime = 0;
unsigned long g_LastFeederStart = 0;
void setTriacOutOn(uint8_t num) {
g_powerFlags |= pump_ctrl_pins[num].Mask;
}
void setTriacOutOff(uint8_t num) {
g_powerFlags &= ~pump_ctrl_pins[num].Mask;
}
bool isTriacOutOnNow(uint8_t num) {
return (PINC & pump_ctrl_pins[num].Mask) != 0;
}
void setPumpOn(uint8_t num) {
if (num >= sizeof(pump_ctrl_pins)/sizeof(tPowerControlPin)) return;
pump_ctrl_pins[num].On = true;
setTriacOutOn(num);
//digitalWrite(pump_ctrl_pins[num].Pin, HIGH);
}
void setPumpOff(uint8_t num) {
if (num >= sizeof(pump_ctrl_pins)/sizeof(tPowerControlPin)) return;
pump_ctrl_pins[num].On = false;
setTriacOutOff(num);
//g_powerFlags &= ~pump_ctrl_pins[num].Mask;
//digitalWrite(pump_ctrl_pins[num].Pin, LOW);
}
bool isPumpOn(uint8_t num) {
if (num >= sizeof(pump_ctrl_pins)/sizeof(tPowerControlPin)) return false;
//return pump_ctrl_pins[num].On;
//return digitalRead(pump_ctrl_pins[num].Pin) != LOW;
return isTriacOutOnNow(num);
}
bool isPumpEnabled(uint8_t num) {
if (num >= sizeof(pump_ctrl_pins)/sizeof(tPowerControlPin)) return false;
return true;
}
void setFeeder(bool on) {
bool pr = (g_powerFlags & MASK_FEEDER) != 0;
if (on)
g_powerFlags |= MASK_FEEDER;
else
g_powerFlags &= ~MASK_FEEDER;
if (pr == on) return; // no change of state
unsigned long m = millis();
if (on) {
g_LastFeederStart = m;
} else {
g_FeederRunTime += (m - g_LastFeederStart);
g_LastFeederStart = m;
Serial.print(F("Feed stop. run time ms "));
Serial.println(g_FeederRunTime);
}
}
//uruchomienie podajnika
void setFeederOn() {
setFeeder(true);
}
//zatrzymanie podajnika
void setFeederOff() {
setFeeder(false);
}
//czy podajnik działa
bool isFeederOn() {
return (PINC & MASK_FEEDER) != 0;
//return digitalReadFast(HW_FEEDER_CTRL_PIN) != LOW;
}
unsigned long g_heaterStartTimeMs = 0;
bool isHeaterOn() {
//return digitalReadFast(HW_HEATER_CTRL_PIN) != LOW;
return (PINC & MASK_HEATER) != 0;
}
void setHeater(bool on) {
//digitalWriteFast(HW_HEATER_CTRL_PIN, b ? HIGH : LOW);
bool b = isHeaterOn();
if (on)
{
if (!b) g_heaterStartTimeMs = millis();
g_powerFlags |= MASK_HEATER;
}
else
{
g_powerFlags &= ~MASK_HEATER;
}
}
unsigned long getHeaterRunningTimeMs() {
bool b = isHeaterOn();
if (!b) return 0;
return millis() - g_heaterStartTimeMs;
}
void triacOn() {
digitalWriteFast(HW_BLOWER_CTRL_PIN, HIGH);
}
void triacOff() {
digitalWriteFast(HW_BLOWER_CTRL_PIN, LOW);
}
//pulse count. We will reset it on every change of output power. It is used in kickstart mode.
volatile uint32_t counter;
volatile uint32_t power_counter;
float brese_increment = 0.0;
float brese_error = 0.0;
uint8_t brese_cycle = 1;
uint8_t brese_curV = 0;
uint8_t power_set = 0;
uint8_t kickstartCount = 0;
//1 - triac on, 0 - triac off
uint8_t breseControlStep()
{
uint8_t rem = counter % brese_cycle;
static uint8_t skipper = 0;
if (rem == 0) {
brese_error += brese_increment;
brese_curV = round(brese_error);
brese_error -= brese_curV;
}
uint8_t b = brese_curV > rem ? 1 : 0;
if (isFlowTooHigh()) {
uint8_t m = g_CurrentConfig.AirControlMode - AIRCONTROL_HITMISS0 + 1;
if (m > 1 && m <= 4) {
if (b != 0) {
skipper++;
return (skipper % m) == 0;
}
}
return 0;
}
return brese_curV > rem ? 1 : 0;
}
void zeroCrossHandler2() {
counter++;
g_powerBits = PINC & POWER_PORT_MASK;
uint8_t pcBits = PINL;
uint8_t stp = breseControlStep();
if (kickstartCount > 0 && power_set > 0) {
stp = 1;
kickstartCount--;
}
if (stp) {
power_counter++;
g_powerFlags |= MASK_BLOWER;
}
else {
g_powerFlags &= ~MASK_BLOWER;
}
PORTC = g_powerFlags & POWER_PORT_MASK; //put all bits at once
if (power_set == 0 && !getManualControlMode())
PORTL = pcBits & ~MASK_FLOW_PWR;
else
PORTL = pcBits | MASK_FLOW_PWR;
}
//power in % 0..255 (255 = 100%), cycleLength 1..255
void breseInit(uint8_t power, uint8_t cycleLength) {
kickstartCount = 0;
if (power == 0) g_BlowerPowerCorrection = 0;
float p0 = power + g_BlowerPowerCorrection;
if (p0 < 0) p0 = 0;
if (p0 > 255) p0 = 255;
float powerPerc = p0 * (g_CurrentConfig.BlowerMax == 0 ? 1.0 : (float) g_CurrentConfig.BlowerMax / 255.0);
if (power_set == 0) {
counter = 0;
power_counter = 0;
kickstartCount = power > 0 && powerPerc < KICKSTART_MIN ? KICKSTART_MIN : 0;
};
power_set = power;
brese_increment = powerPerc * cycleLength / 255.0;
brese_cycle = cycleLength;
}
int8_t getBlowerPowerCorrection() {
return g_BlowerPowerCorrection;
}
void setBlowerPowerCorrection(int8_t c) {
g_BlowerPowerCorrection = c;
breseInit(power_set, brese_cycle);
}
void initializeBlowerControl() {
brese_cycle = g_DeviceConfig.DefaultBlowerCycle;
pinModeFast(HW_BLOWER_CTRL_PIN, OUTPUT);
triacOff();
pinMode(HW_ZERO_DETECT_PIN, INPUT);
pinMode(HW_PUMP_CO1_CTRL_PIN, OUTPUT);
pinMode(HW_PUMP_CWU1_CTRL_PIN, OUTPUT);
pinMode(HW_PUMP_CO2_CTRL_PIN, OUTPUT);
pinMode(HW_PUMP_CIRC_CTRL_PIN, OUTPUT);
pinMode(HW_FEEDER_CTRL_PIN, OUTPUT);
pinMode(HW_HEATER_CTRL_PIN, OUTPUT);
pinMode(HF_FLOW_SENSOR_POWER_PIN, OUTPUT);
digitalWrite(HW_PUMP_CO1_CTRL_PIN, LOW);
digitalWrite(HW_PUMP_CWU1_CTRL_PIN, LOW);
digitalWrite(HW_PUMP_CO2_CTRL_PIN, LOW);
digitalWrite(HW_PUMP_CIRC_CTRL_PIN, LOW);
digitalWrite(HW_FEEDER_CTRL_PIN, LOW);
digitalWrite(HW_HEATER_CTRL_PIN, LOW);
digitalWrite(HF_FLOW_SENSOR_POWER_PIN, LOW);
if (HW_THERMOSTAT_PIN != 0)
{
pinMode(HW_THERMOSTAT_PIN, INPUT_PULLUP);
}
if (HW_THERMOSTAT_PIN_ALT != 0)
{
pinMode(HW_THERMOSTAT_PIN_ALT, INPUT);
}
attachInterrupt(digitalPinToInterrupt(HW_ZERO_DETECT_PIN), zeroCrossHandler2, RISING);
}
bool isThermostatOn() {
if (HW_THERMOSTAT_PIN != 0 && g_CurrentConfig.EnableThermostat == 1 && digitalReadFast(HW_THERMOSTAT_PIN) == LOW) return true;
if (HW_THERMOSTAT_PIN_ALT != 0 && g_CurrentConfig.EnableThermostat == 2 && digitalReadFast(HW_THERMOSTAT_PIN_ALT) == HIGH) return true;
return false;
}
uint8_t getCycleLengthForBlowerPower(uint8_t power) {
return g_DeviceConfig.DefaultBlowerCycle;
}
void setBlowerPower(uint8_t power) {
breseInit(power, brese_cycle == 0 ? getCycleLengthForBlowerPower(power) : brese_cycle);
}
void setBlowerPower(uint8_t power, uint8_t powerCycle)
{
breseInit(power, powerCycle);
}
uint8_t getCurrentBlowerCycle() {
return brese_cycle;
}
uint8_t getCurrentBlowerPower() {
return power_set;
}
int8_t getBlowerPowerCorrection();
void setBlowerPowerCorrection();
unsigned long g_feederRunMs = 0;
unsigned long g_pumpCORunMs = 0;
unsigned long g_pumpCWURunMs = 0;
unsigned long g_pumpCircRunMs = 0;
//we just assume the thing has been running or not running the whole time since last check.
//so we should run this task quite frequently to avoid errors.
void gatherStatsTask() {
static unsigned long _lastRun = 0;
unsigned long t = millis();
if (_lastRun != 0) {
unsigned long rt = t - _lastRun;
if (isFeederOn()) g_feederRunMs += rt;
if (isPumpOn(PUMP_CO1)) g_pumpCORunMs += rt;
if (isPumpOn(PUMP_CWU1)) g_pumpCWURunMs += rt;
if (isPumpOn(PUMP_CIRC)) g_pumpCircRunMs += rt;
}
_lastRun = t;
}
/*
volatile unsigned PulseTime = 0;
ISR(TIMER1_CAPT_vect)
{
static unsigned RisingEdgeTime = 0;
static unsigned FallingEdgeTime = 0;
// Which edge is armed?
if (TCCR1B & (1 << ICES1))
{
// Rising Edge
RisingEdgeTime = ICR1;
TCCR1B &= ~(1 << ICES1); // Switch to Falling Edge
}
else
{
// Falling Edge
FallingEdgeTime = ICR1;
TCCR1B |= (1 << ICES1); // Switch to Rising Edge
PulseTime = FallingEdgeTime - RisingEdgeTime;
}
}
void loop() {
unsigned pulseTime = 0;
noInterrupts();
pulseTime = PulseTime;
PulseTime = 0;
interrupts();
if (pulseTime)
{
Serial.println(pulseTime);
}
}
*/
void initializeFlowMeter() {
#ifdef HW_FLOW_SENSOR_INPUT_PIN
pinMode(HW_FLOW_SENSOR_INPUT_PIN, INPUT);
Serial.print("Flow sensor in V:");
Serial.println(HW_FLOW_SENSOR_INPUT_PIN);
#endif
#ifdef HW_FLOW_SENSOR_PULSE_PIN
#endif
}
float getCurrentFlowRate() {
#ifdef HW_FLOW_SENSOR_INPUT_PIN
int x = analogRead(HW_FLOW_SENSOR_INPUT_PIN);
return (float) x;
#endif
#ifdef HW_FLOW_SENSOR_PULSE_PIN
#endif
return 0;
}