-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathburn_control.cpp
1341 lines (1136 loc) · 43.3 KB
/
burn_control.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <arduino.h>
#include <assert.h>
#include "burn_control.h"
#include "boiler_control.h"
#include "hwsetup.h"
#include "piec_sensors.h"
#include "ui_handler.h"
#include "varholder.h"
#include <MD_DS1307.h>
#include <pid.h>
#define MAX_TEMP 90
#define FIRESTART_STABILIZE_TIME 30000
float g_TargetTemp = 0.1; //aktualnie zadana temperatura pieca (która może być wyższa od temp. zadanej w konfiguracji bo np grzejemy CWU)
float g_TempCO = 0.0;
float g_TempCWU = 0.0;
float g_TempPowrot = 0.0; //akt. temp. powrotu
float g_TempSpaliny = 0.0; //akt. temp. spalin
float g_TempFeeder = 0.1;
float g_TempBurner = 0;
float g_InitialTempCO = 0;
float g_InitialTempExh = 0;
float g_AirFlow = 0; //air flow measurement
volatile uint8_t g_AirFlowNormal = 0;
uint8_t g_TargetFlow; //
TSTATE g_BurnState = STATE_UNDEFINED; //aktualny stan grzania
TSTATE g_ManualState = STATE_UNDEFINED; //wymuszony ręcznie stan (STATE_UNDEFINED: brak wymuszenia)
CWSTATE g_CWState = CWSTATE_OK; //current cw status
HEATNEED g_needHeat = NEED_HEAT_NONE; //0, 1 or 2
HEATNEED g_initialNeedHeat = NEED_HEAT_NONE; //heat needs at the beginning of current state
uint16_t g_burnCycleNum = 0; //number of burning cycles in current state
bool g_HomeThermostatOn = true; //true - termostat pokojowy kazał zaprzestać grzania
bool g_overrideBurning = false; //set to true to have system think fire is started
float g_TempZewn = 0.0; //aktualna temp. zewn
char* g_Alarm;
unsigned long g_P1Time = 0;
unsigned long g_P2Time = 0;
unsigned long g_P0Time = 0;
float lastCOTemperatures[21];
float lastExhaustTemperatures[21]; //every 30 sec => 10 minutes
float lastFlows[11];
epid_t g_flow_pid_ctx;
CircularBuffer<float> g_lastCOReads(lastCOTemperatures, sizeof(lastCOTemperatures)/sizeof(float));
CircularBuffer<float> g_lastExhaustReads(lastExhaustTemperatures, sizeof(lastExhaustTemperatures)/sizeof(float));
CircularBuffer<float> g_lastFlows(lastFlows, sizeof(lastFlows)/sizeof(float));
//czas wejscia w bieżący stan, ms
unsigned long g_CurStateStart = 0;
//float g_CurStateStartTempCO = 0; //temp pieca w momencie wejscia w bież. stan.
uint8_t g_BurnCyclesBelowMinTemp = 0; //number of burn cycles with g_TempCO below minimum pump temperature (for detecting extinction of fire)
unsigned long g_CurBurnCycleStart = 0; //timestamp, w ms, w ktorym rozpoczelismy akt. cykl palenia (ten podajnik+nadmuch)
TSTATE getInitialState() {
if (g_CurrentConfig.FireStartMode == FIRESTART_MODE_DISABLED) return STATE_P0;
if (g_CurrentConfig.FireStartMode == FIRESTART_MODE_JUSTSTOP) return STATE_FIRESTART;
if (g_CurrentConfig.FireStartMode == FIRESTART_MODE_STARTSTOP) {
if (g_needHeat != NEED_HEAT_NONE) return STATE_FIRESTART;
return STATE_OFF;
}
return STATE_FIRESTART;
}
#define EPID_KP 2.0f
#define EPID_KI 0.15f
#define EPID_KD 0.1f
#define PID_LIM_MIN 0.0f /* Limit for PWM. */
#define PID_LIM_MAX 255.0f /* Limit for PWM. */
#define DEADBAND 0.02f /* Off==0 */
void initializeAirflowPid() {
epid_info_t epid_err = epid_init(&g_flow_pid_ctx,
g_AirFlowNormal, g_AirFlowNormal, g_TargetFlow,
EPID_KP, EPID_KI, EPID_KD);
if (epid_err != EPID_ERR_NONE) {
Serial.print("\n\n** ERROR: epid_err != EPID_ERR_NONE **\n\n");
}
}
void initializeBurningLoop() {
g_TargetTemp = g_CurrentConfig.TCO;
g_HomeThermostatOn = true;
initializeAirflowPid();
TSTATE startState = getInitialState();
forceState(startState);
}
void setAlarm(const char* txt) {
if (txt != NULL) g_Alarm = txt;
forceState(STATE_ALARM);
}
float g_dT60; //1-minute temp delta
float g_dTl3; //last 3 readings diff
float g_dTExh; //1-min temp delta for exhaust
const uint8_t RatioCoeffs[] = {6,4,3,2,2,1,1,1};
float CalcIncreaseRatio(const CircularBuffer<float>& buf, uint8_t numSamples) {
uint8_t c = buf.GetCount()-1;
if (c > numSamples) c = numSamples;
if (c > sizeof(RatioCoeffs)/sizeof(uint8_t)) c = sizeof(RatioCoeffs)/sizeof(uint8_t);
if (c == 0) return 0.0f;
uint8_t coeffs = 0;
float sum = 0.0f;
float curVal = *buf.GetAt(-1);
for (int i=0; i<c;i++) {
coeffs += RatioCoeffs[i];
float v = curVal - *buf.GetAt(-(i+2));
v *= RatioCoeffs[i];
v /= (i+1);
sum += v;
}
return sum / coeffs;
}
float CalcIncreaseRatio2(const CircularBuffer<float>& buf, uint8_t numSamples) {
uint8_t c = buf.GetCount()-1;
if (c > numSamples) c = numSamples;
if (c > sizeof(RatioCoeffs)/sizeof(uint8_t)) c = sizeof(RatioCoeffs)/sizeof(uint8_t);
if (c == 0) return 0.0f;
uint8_t coeffs = 0;
float sum = 0.0f;
float curVal = *buf.GetAt(-1);
for (int i=0; i<c;i++) {
coeffs += RatioCoeffs[i];
float v = curVal - *buf.GetAt(-(i+2));
v *= RatioCoeffs[i];
v /= (i+1);
sum += v;
}
return sum / coeffs;
}
#define AVG_CNT 4
float _tempCoAvg[AVG_CNT];
float _tempExhAvg[AVG_CNT];
uint16_t _avgIdx = 0;
#define TEMP_HISTORY_SAMPLE_TIME_MS 30000
void processSensorValues() {
unsigned long ms = millis();
static unsigned long prevMs = 0;
float f1 = getLastDallasValue(TSENS_BOILER);
float f2 = getLastThermocoupleValue(T2SENS_EXHAUST);
_tempCoAvg[_avgIdx % AVG_CNT] = f1;
_tempExhAvg[_avgIdx % AVG_CNT] = f2;
_avgIdx++;
g_TempCO = f1;
g_TempSpaliny = f2;
uint16_t n = _avgIdx >= AVG_CNT ? AVG_CNT : _avgIdx;
f1 = 0; f2 = 0;
if (n > 0) {
for(uint16_t i =0; i<n; i++) {
f1 += _tempCoAvg[i];
f2 += _tempExhAvg[i];
}
g_TempCO = f1 / n;
g_TempSpaliny = f2 / n;
}
g_TempCWU = getLastDallasValue(TSENS_CWU);
g_TempPowrot = getLastDallasValue(TSENS_RETURN);
g_TempFeeder = getLastDallasValue(TSENS_FEEDER);
g_TempZewn = getLastDallasValue(TSENS_EXTERNAL);
g_TempBurner = getLastThermocoupleValue(T2SENS_BURNER);
g_AirFlow = getCurrentFlowRate();
if (g_CurrentConfig.EnableThermostat)
{
g_HomeThermostatOn = isThermostatOn();
}
if (ms - prevMs >= TEMP_HISTORY_SAMPLE_TIME_MS) {
prevMs = ms;
//float ts = g_TempSpaliny < g_TempCO - EXHAUST_TEMP_DELTA_BELOW_CO ? g_TempCO - EXHAUST_TEMP_DELTA_BELOW_CO : g_TempSpaliny;
g_lastExhaustReads.Enqueue(g_TempSpaliny);
g_lastCOReads.Enqueue(g_TempCO);
Serial.print("Q:");
Serial.println(g_lastCOReads.GetCount());
}
g_lastFlows.Enqueue(g_AirFlow);
n = g_lastFlows.GetCount();
float f0 = 0.0;
for (int i=0; i<n; i++) {
f0 += *g_lastFlows.GetAt(i);
}
f0 /= n;
f1 = (float) g_DeviceConfig.AirFlowCoeff * 4.0 + 3.0;
g_AirFlowNormal = (uint8_t) ((f0 * 255.0) / f1);
g_dTExh = CalcIncreaseRatio(g_lastExhaustReads, 4) * 2.0;
g_dTl3 = CalcIncreaseRatio(g_lastCOReads, 4) * 2.0;
g_dT60 = CalcIncreaseRatio(g_lastCOReads, 8) * 2.0;
}
///calculate delta (reduction or increase) to blower power
///we run this adjustment in cycles (measure, adjust, measure, adjust) of xxx seconds
int8_t calculateBlowerPowerAdjustment(uint8_t desiredFlow, uint8_t currentFlow, uint8_t currentBlowerPower) {
//if less than 1% difference of flow -dont do anything
if (desiredFlow == 0) return -currentBlowerPower;
float diff = (float) (desiredFlow - currentFlow) / (float) desiredFlow;
if (abs(diff) <= 0.03) return 0;
int8_t adj = diff * currentBlowerPower;
if (adj > 0) {
if (currentBlowerPower + adj < currentBlowerPower) adj = 255 - currentBlowerPower;
}
else {
if (currentBlowerPower + adj > currentBlowerPower) adj = -currentBlowerPower;
}
/*Serial.print("adj diff:");
Serial.print(diff);
Serial.print(", cur:");
Serial.print(currentFlow);
Serial.print(",trg:");
Serial.print(desiredFlow);
Serial.print(", adj:");
Serial.println(adj);*/
return adj;
}
void maintainDesiredFlow1() {
static unsigned long lastRun = 0L;
unsigned long t = millis();
if (t - lastRun < 5000) return;
lastRun = t;
if (g_TargetFlow == 0) return;
if (!getManualControlMode())
{
if (g_CurrentConfig.AirControlMode != AIRCONTROL_CORRECT1 && g_CurrentConfig.AirControlMode != AIRCONTROL_CORRECT2) return;
if (g_BurnState != STATE_P0 && g_BurnState != STATE_P1 && g_BurnState != STATE_P2 && g_BurnState != STATE_FIRESTART && g_BurnState != STATE_REDUCE1 && g_BurnState != STATE_REDUCE2) return;
};
uint8_t pow = getCurrentBlowerPower();
if (pow == 0 && getManualControlMode())
{
pow = g_TargetFlow;
setBlowerPower(pow);
}
float setF = (float) g_TargetFlow;
float actF = (float) g_AirFlowNormal;
epid_pid_calc(&g_flow_pid_ctx, setF, actF); /* Calc PID terms values */
Serial.print("PID flow trg:");
Serial.print(setF);
Serial.print(", cur:");
Serial.print(actF);
/* Apply deadband filter to `delta[k]`. */
float deadband_delta = g_flow_pid_ctx.p_term + g_flow_pid_ctx.i_term + g_flow_pid_ctx.d_term;
if (true || (deadband_delta != deadband_delta) || (fabsf(deadband_delta) >= DEADBAND)) {
/* Compute new control signal output */
epid_pid_sum(&g_flow_pid_ctx, PID_LIM_MIN, PID_LIM_MAX);
Serial.print(", calc pwr:");
Serial.print(g_flow_pid_ctx.y_out);
setBlowerPower((uint8_t) g_flow_pid_ctx.y_out);
}
Serial.println();
}
bool isFlowTooHigh() {
if (g_CurrentConfig.AirControlMode < AIRCONTROL_HITMISS0 || g_CurrentConfig.AirControlMode > AIRCONTROL_HITMISS3) return false;
if (g_BurnState != STATE_P0 && g_BurnState != STATE_P1 && g_BurnState != STATE_P2 && g_BurnState != STATE_FIRESTART && g_BurnState != STATE_REDUCE1 && g_BurnState != STATE_REDUCE2) return;
if (g_TargetFlow == 0) return false;
return g_AirFlowNormal > g_TargetFlow + 1;
}
void maintainDesiredFlow() {
static unsigned long lastRun = millis();
unsigned long t = millis();
if (t - lastRun < 4000) return;
lastRun = t;
if (g_TargetFlow == 0) return;
if (!getManualControlMode())
{
if (g_CurrentConfig.AirControlMode != AIRCONTROL_CORRECT1 && g_CurrentConfig.AirControlMode != AIRCONTROL_CORRECT2) return;
if (g_BurnState != STATE_P0 && g_BurnState != STATE_P1 && g_BurnState != STATE_P2 && g_BurnState != STATE_FIRESTART && g_BurnState != STATE_REDUCE1 && g_BurnState != STATE_REDUCE2) return;
};
int16_t cp = getCurrentBlowerPower();
if (cp == 0 && getManualControlMode()) {
cp = g_TargetFlow;
setBlowerPower(cp);
}
float setF = (float) g_TargetFlow;
float actF = (float) g_AirFlowNormal;
int16_t corr = getBlowerPowerCorrection();
float dev = (setF - actF) / setF;
if (abs(dev) <= 0.04) { //less than 5%
return;
}
int8_t d = dev > 0.0 ? 1 : -1;
if (abs(dev) > 0.1) d *= 2;
if (abs(dev) > 0.25) d *= 2;
corr += d;
if (corr > 127) corr = 127;
if (corr < -127) corr = -127;
//Serial.print("flow:");
//Serial.print(g_AirFlowNormal);
//Serial.print(", dev:");
//Serial.print(dev);
//Serial.print(", corr:");
//Serial.print(corr);
//Serial.println();
setBlowerPowerCorrection(corr);
}
void circulationControlTask() {
if (!isPumpEnabled(PUMP_CIRC)) return;
if (g_CurrentConfig.CircCycleMin == 0 || g_CurrentConfig.CircWorkTimeS == 0) return;
if (getManualControlMode()) return;
uint16_t cmin = RTC.h * 60 + RTC.m;
cmin = cmin % g_CurrentConfig.CircCycleMin;
uint16_t secs = cmin * 60 + RTC.s;
bool pumpOn = secs < g_CurrentConfig.CircWorkTimeS;
bool zoneIn = false;
if ((RTC.h >= 17 && RTC.h <= 21))
zoneIn = true;
else if ((RTC.h >= 6 && RTC.h <= 7))
zoneIn = true;
else if ((RTC.h >= 11 && RTC.h <= 12))
zoneIn = true;
pumpOn = zoneIn && pumpOn;
if (pumpOn) {
if (!isPumpOn(PUMP_CIRC)) Serial.println("Circ pump start");
setPumpOn(PUMP_CIRC);
} else {
if (isPumpOn(PUMP_CIRC)) Serial.println("Circ pump stop");
setPumpOff(PUMP_CIRC);
}
};
/***
* ---
*/
void burningProc()
{
assert(g_BurnState != STATE_UNDEFINED && g_BurnState < N_BURN_STATES);
if (g_BurnState != BURN_STATES[g_BurnState].State) {
Serial.print(F("invalid burn st"));
Serial.println(g_BurnState);
}
unsigned long t = millis();
//1. check if we should change state
for(int i=0; i < N_BURN_TRANSITIONS; i++)
{
if (BURN_TRANSITIONS[i].From == g_BurnState)
{
if (getManualControlMode() && BURN_TRANSITIONS[i].To != STATE_ALARM) {
continue;
}
if (BURN_TRANSITIONS[i].fCondition != NULL && BURN_TRANSITIONS[i].fCondition())
{
if (g_BurnState == STATE_P1 || g_BurnState == STATE_REDUCE1)
g_P1Time += (t - g_CurStateStart);
else if (g_BurnState == STATE_P2 || g_BurnState == STATE_REDUCE2)
g_P2Time += (t - g_CurStateStart);
else if (g_BurnState == STATE_P0)
g_P0Time += (t - g_CurStateStart);
Serial.print(F("BS: trans "));
Serial.print(i);
if (g_BurnState == STATE_P1) {
Serial.print(" tP1:");
Serial.print(g_P1Time);
} else if (g_BurnState == STATE_P2) {
Serial.print(" tP2:");
Serial.print(g_P2Time);
}
Serial.print(" ");
Serial.print(BURN_STATES[BURN_TRANSITIONS[i].From].Code);
Serial.print("->");
Serial.println(BURN_STATES[BURN_TRANSITIONS[i].To].Code);
if (BURN_TRANSITIONS[i].fAction != NULL) BURN_TRANSITIONS[i].fAction(i);
//transition to new state
g_BurnState = BURN_TRANSITIONS[i].To;
assert(g_BurnState != STATE_UNDEFINED && g_BurnState < N_BURN_STATES);
g_CurStateStart = t;
g_initialNeedHeat = g_needHeat;
g_CurBurnCycleStart = g_CurStateStart;
g_InitialTempCO = g_TempCO;
g_InitialTempExh = g_TempSpaliny;
g_BurnCyclesBelowMinTemp = 0;
if (BURN_STATES[g_BurnState].fInitialize != NULL) BURN_STATES[g_BurnState].fInitialize(BURN_TRANSITIONS[i].From);
return;
}
}
}
if (BURN_STATES[g_BurnState].fLoop != NULL) {
BURN_STATES[g_BurnState].fLoop();
}
}
void setManualControlMode(bool b)
{
if (!b) {
g_ManualState = STATE_UNDEFINED;
if (g_BurnState == STATE_STOP) {
TSTATE startState = getInitialState();
forceState(startState);
}
}
else {
g_ManualState = STATE_STOP;
if (g_BurnState != STATE_STOP) {
forceState(STATE_STOP);
}
}
}
TSTATE getManualControlState()
{
return g_ManualState;
}
void setManualControlState(TSTATE t) {
g_ManualState = t;
if (t == STATE_UNDEFINED) {
//forceState(STATE_P0);
setManualControlMode(false);
}
else {
if (g_BurnState != g_ManualState) {
forceState(g_ManualState);
}
}
}
bool getManualControlMode()
{
return g_ManualState != STATE_UNDEFINED;
}
float curStateMaxTempCO = 0;
//api - switch to state
void forceState(TSTATE st) {
assert(st != STATE_UNDEFINED);
if (st == g_BurnState) return;
unsigned long t = millis();
if (g_BurnState == STATE_P1 || g_BurnState == STATE_REDUCE1)
g_P1Time += (t - g_CurStateStart);
else if (g_BurnState == STATE_P2 || g_BurnState == STATE_REDUCE2)
g_P2Time += (t - g_CurStateStart);
else if (g_BurnState == STATE_P0)
g_P0Time += (t - g_CurStateStart);
TSTATE old = g_BurnState;
g_BurnState = st;
g_CurStateStart = t;
g_initialNeedHeat = g_needHeat;
g_CurBurnCycleStart = g_CurStateStart;
g_BurnCyclesBelowMinTemp = 0;
if (BURN_STATES[g_BurnState].fInitialize != NULL) BURN_STATES[g_BurnState].fInitialize(old);
Serial.print("BS->");
Serial.print(BURN_STATES[g_BurnState].Code);
Serial.print(" tP1:");
Serial.print(g_P1Time);
Serial.print(" tP2:");
Serial.println(g_P2Time);
}
void updatePumpStatus();
void handleHeatNeedStatus();
//API
//to nasza procedura aktualizacji stanu hardware-u
//wolana cyklicznie.
void burnControlTask() {
processSensorValues();
handleHeatNeedStatus();
updatePumpStatus();
burningProc();
}
//inicjalizacja dla stanu grzania autom. P1 P2
void workStateInitialize(TSTATE prev) {
assert(g_BurnState != STATE_UNDEFINED && g_BurnState != STATE_STOP && g_BurnState < N_BURN_STATES);
g_CurStateStart = millis();
g_initialNeedHeat = g_needHeat;
g_CurBurnCycleStart = g_CurStateStart;
g_BurnCyclesBelowMinTemp = 0;
curStateMaxTempCO = g_TempCO;
g_burnCycleNum = 0;
setBlowerPower(g_CurrentConfig.BurnConfigs[g_BurnState].BlowerPower, g_CurrentConfig.BurnConfigs[g_BurnState].BlowerCycle == 0 ? g_DeviceConfig.DefaultBlowerCycle : g_CurrentConfig.BurnConfigs[g_BurnState].BlowerCycle);
if (g_CurrentConfig.AirControlMode != AIRCONTROL_NONE && g_CurrentConfig.BurnConfigs[g_BurnState].AirFlow > 0) {
g_TargetFlow = g_CurrentConfig.BurnConfigs[g_BurnState].AirFlow;
}
Serial.print(F("Burn init, cycle: "));
Serial.println(g_CurrentConfig.BurnConfigs[g_BurnState].CycleSec);
setHeater(false);
g_InitialTempCO = g_TempCO;
g_InitialTempExh = g_TempSpaliny;
}
//przejscie do stanu recznego
void stopStateInitialize(TSTATE prev) {
assert(g_BurnState == STATE_STOP);
setBlowerPower(0);
g_TargetFlow = 0;
setFeederOff();
setHeater(false);
g_CurStateStart = millis();
g_initialNeedHeat = g_needHeat;
g_CurBurnCycleStart = g_CurStateStart;
g_InitialTempCO = g_TempCO;
g_InitialTempExh = g_TempSpaliny;
g_overrideBurning = false;
}
///pętla palenia dla stanu pracy
//załączamy dmuchawę na ustaloną moc no i pilnujemy podajnika
void workStateBurnLoop() {
assert(g_BurnState == STATE_P1 || g_BurnState == STATE_P2 || g_BurnState == STATE_FIRESTART);
unsigned long tNow = millis();
unsigned long burnCycleLen = (unsigned long) g_CurrentConfig.BurnConfigs[g_BurnState].CycleSec * 1000L;
//feeder time length
unsigned long burnFeedLen = (unsigned long) g_CurrentConfig.BurnConfigs[g_BurnState].FuelSecT10 * (100L + g_CurrentConfig.FuelCorrection);
if (tNow - g_CurBurnCycleStart < burnFeedLen)
{
setFeederOn();
}
else
{
setFeederOff();
}
if (g_TempCO > curStateMaxTempCO) curStateMaxTempCO = g_TempCO;
if (tNow - g_CurBurnCycleStart >= burnCycleLen)
{
g_CurBurnCycleStart = tNow; //next burn cycle
setBlowerPower(g_CurrentConfig.BurnConfigs[g_BurnState].BlowerPower, g_CurrentConfig.BurnConfigs[g_BurnState].BlowerCycle == 0 ? g_DeviceConfig.DefaultBlowerCycle : g_CurrentConfig.BurnConfigs[g_BurnState].BlowerCycle);
g_BurnCyclesBelowMinTemp = g_TempCO <= g_CurrentConfig.TMinPomp ? g_BurnCyclesBelowMinTemp + 1 : 0;
g_burnCycleNum++;
if (g_CurrentConfig.AirControlMode != AIRCONTROL_NONE && g_CurrentConfig.BurnConfigs[g_BurnState].AirFlow > 0) {
g_TargetFlow = g_CurrentConfig.BurnConfigs[g_BurnState].AirFlow;
}
}
if (g_BurnState != STATE_FIRESTART) setHeater(false);
maintainDesiredFlow();
}
unsigned long _reductionStateEndMs = 0; //inside reduction state - this is the calculated end time. Outside (before reduction) - we put remaining P1 or P2 time there before going to reduction.
void firestartStateInit(TSTATE prev) {
assert(g_BurnState == STATE_FIRESTART);
g_CurStateStart = millis();
g_initialNeedHeat = g_needHeat;
g_CurBurnCycleStart = g_CurStateStart;
g_burnCycleNum = 0;
g_BurnCyclesBelowMinTemp = 0;
curStateMaxTempCO = g_TempCO;
g_InitialTempCO = g_TempCO;
g_InitialTempExh = g_TempSpaliny;
g_overrideBurning = false;
uint8_t bp = g_CurrentConfig.BurnConfigs[g_BurnState].BlowerPower;
setBlowerPower(0);
setBlowerPower(bp, g_CurrentConfig.BurnConfigs[g_BurnState].BlowerCycle == 0 ? g_DeviceConfig.DefaultBlowerCycle : g_CurrentConfig.BurnConfigs[g_BurnState].BlowerCycle);
if (g_CurrentConfig.AirControlMode != AIRCONTROL_NONE && g_CurrentConfig.BurnConfigs[g_BurnState].AirFlow > 0) {
g_TargetFlow = g_CurrentConfig.BurnConfigs[g_BurnState].AirFlow;
}
if (bp > 0) {
setHeater(true);
}
Serial.print(F("Firestart init, cycle: "));
Serial.println(g_CurrentConfig.BurnConfigs[g_BurnState].CycleSec);
}
void firestartStateLoop() {
workStateBurnLoop();
unsigned long tRun = millis() - g_CurStateStart;
if (tRun < FIRESTART_STABILIZE_TIME) {
g_InitialTempCO = g_TempCO;
g_InitialTempExh = g_TempSpaliny;
}
else {
if (g_TempCO < g_InitialTempCO) g_InitialTempCO = g_TempCO;
if (g_TempSpaliny < g_InitialTempExh) g_InitialTempExh = g_TempSpaliny;
}
uint8_t bp = getCurrentBlowerPower();
bool heater = bp > 0;
if (heater && g_CurrentConfig.HeaterMaxRunTimeS != 0) {
const unsigned int tCool = 30 * 1000;
unsigned long t = millis() - g_CurStateStart;
unsigned long ht = g_CurrentConfig.HeaterMaxRunTimeS * 1000L + tCool;
unsigned long t2 = t % ht;
heater = t2 <= ht - tCool;
if (!heater) {
}
maintainDesiredFlow();
}
setHeater(heater);
}
void offStateInit(TSTATE prev) {
assert(g_BurnState == STATE_OFF);
g_CurStateStart = millis();
g_initialNeedHeat = g_needHeat;
g_CurBurnCycleStart = g_CurStateStart;
g_InitialTempCO = g_TempCO;
g_InitialTempExh = g_TempSpaliny;
g_TargetFlow = 0;
setHeater(false);
setBlowerPower(0);
setFeederOff();
}
void offStateLoop() {
setHeater(false);
setBlowerPower(0);
setFeederOff();
}
void reductionStateInit(TSTATE prev) {
assert(g_BurnState == STATE_REDUCE1 || g_BurnState == STATE_REDUCE2);
assert(prev == STATE_P1 || prev == STATE_P2);
if (prev != STATE_P1 && prev != STATE_P2) {
Serial.print(F("red: wrong state"));
Serial.println(prev);
prev = STATE_P1;
}
g_CurStateStart = millis();
g_initialNeedHeat = g_needHeat;
g_CurBurnCycleStart = g_CurStateStart;
g_InitialTempCO = g_TempCO;
g_InitialTempExh = g_TempSpaliny;
unsigned long adj = _reductionStateEndMs; //remaining time from P2 or P1
_reductionStateEndMs = (unsigned long) g_CurrentConfig.BurnConfigs[prev].CycleSec * 1000L;
if (prev == STATE_P2) adj += ((unsigned long) g_CurrentConfig.ReductionP2ExtraTime * (unsigned long) g_CurrentConfig.BurnConfigs[prev].CycleSec * 10L); // * 1000 / 100;
_reductionStateEndMs = g_CurStateStart + _reductionStateEndMs + adj; //
setBlowerPower(g_CurrentConfig.BurnConfigs[prev].BlowerPower, g_CurrentConfig.BurnConfigs[prev].BlowerCycle == 0 ? g_DeviceConfig.DefaultBlowerCycle : g_CurrentConfig.BurnConfigs[prev].BlowerCycle);
if (g_CurrentConfig.AirControlMode != AIRCONTROL_NONE && g_CurrentConfig.BurnConfigs[prev].AirFlow > 0) {
g_TargetFlow = g_CurrentConfig.BurnConfigs[prev].AirFlow;
}
setFeederOff();
setHeater(false);
Serial.print(F("red: cycle should end in "));
Serial.print((_reductionStateEndMs - g_CurStateStart) / 1000.0);
Serial.print(F(", extra time s:"));
Serial.println(adj / 1000);
}
void reductionStateLoop() {
assert(g_BurnState == STATE_REDUCE1 || g_BurnState == STATE_REDUCE2);
TSTATE prevState = g_BurnState == STATE_REDUCE1 ? STATE_P1 : STATE_P2;
unsigned long tNow = millis();
unsigned long burnCycleLen = (unsigned long) g_CurrentConfig.BurnConfigs[prevState].CycleSec * 1000L;
if (tNow > _reductionStateEndMs + 100)
{
Serial.print(F("reduction should end by now:"));
Serial.println(g_CurBurnCycleStart);
}
maintainDesiredFlow();
}
void podtrzymanieStateInitialize(TSTATE prev) {
g_CurStateStart = millis();
g_CurBurnCycleStart = g_CurStateStart;
g_initialNeedHeat = g_needHeat;
g_burnCycleNum = 0;
g_InitialTempCO = g_TempCO;
g_InitialTempExh = g_TempSpaliny;
g_overrideBurning = false;
setBlowerPower(0);
g_TargetFlow = 0;
setFeederOff();
setHeater(false);
}
void podtrzymanieStateLoop() {
assert(g_BurnState == STATE_P0);
unsigned long tNow = millis();
static uint8_t cycleNum = 0;
unsigned long burnCycleLen = (unsigned long) g_CurrentConfig.BurnConfigs[STATE_P0].CycleSec * 1000L;
unsigned long burnFeedLen = (unsigned long) g_CurrentConfig.BurnConfigs[STATE_P0].FuelSecT10 * (100L + g_CurrentConfig.FuelCorrection);
unsigned long blowerStart = burnCycleLen - (unsigned long) g_CurrentConfig.P0BlowerTime * 1000L;
if (tNow - g_CurBurnCycleStart >= blowerStart)
{
setBlowerPower(g_CurrentConfig.BurnConfigs[g_BurnState].BlowerPower, g_CurrentConfig.BurnConfigs[g_BurnState].BlowerCycle == 0 ? g_DeviceConfig.DefaultBlowerCycle : g_CurrentConfig.BurnConfigs[g_BurnState].BlowerCycle);
}
else
{
setBlowerPower(0);
}
if (tNow - g_CurBurnCycleStart >= blowerStart && tNow - g_CurBurnCycleStart <= blowerStart + burnFeedLen && (cycleNum % g_CurrentConfig.P0FuelFreq) == 0)
{
setFeederOn();
}
else
{
setFeederOff();
}
if (tNow - g_CurBurnCycleStart >= burnCycleLen)
{
g_CurBurnCycleStart = tNow;
cycleNum++;
g_burnCycleNum++;
}
setHeater(false);
}
void manualStateLoop() {
if (isHeaterOn()) {
unsigned long t = getHeaterRunningTimeMs();
if (g_CurrentConfig.HeaterMaxRunTimeS != 0 && t > g_CurrentConfig.HeaterMaxRunTimeS * 1000) {
setHeater(false);
}
}
maintainDesiredFlow();
}
void handleHeatNeedStatus() {
if (g_CWState == CWSTATE_OK) {
if (g_TempCWU < g_CurrentConfig.TCWU - g_CurrentConfig.THistCwu) {
g_CWState = CWSTATE_HEAT; //start heating cwu
g_TargetTemp = max(g_CurrentConfig.TCO, g_CurrentConfig.TCWU + g_CurrentConfig.TDeltaCWU);
Serial.print(F("CWU heat - adjusted target temp to "));
Serial.println(g_TargetTemp);
} else g_TargetTemp = g_CurrentConfig.TCO;
}
else if (g_CWState == CWSTATE_HEAT) {
if (g_TempCWU >= g_CurrentConfig.TCWU) {
g_CWState = CWSTATE_OK;
g_TargetTemp = g_CurrentConfig.TCO;
Serial.print(F("CWU ready - adjusted target temp to "));
Serial.println(g_TargetTemp);
} else {
g_TargetTemp = max(g_CurrentConfig.TCO, g_CurrentConfig.TCWU + g_CurrentConfig.TDeltaCWU);
}
}
else assert(false);
HEATNEED prev = g_needHeat;
g_needHeat = NEED_HEAT_NONE;
if (g_CWState == CWSTATE_HEAT) g_needHeat = NEED_HEAT_CWU;
if (!g_CurrentConfig.SummerMode && g_needHeat == NEED_HEAT_NONE)
{
if (!g_CurrentConfig.EnableThermostat || g_HomeThermostatOn) g_needHeat = NEED_HEAT_CO;
}
if (g_needHeat != prev) {
Serial.print(F("Heat needs changed:"));
Serial.println(g_needHeat);
}
}
uint8_t cond_needCooling(); //below
bool cond_willFallBelowHysteresisSoon(float adj = 0);
//
// which pumps and when
// cwu heating needed -> turn on cwu pump if current temp is above min pump temp and above cwu temp + delta
//
void updatePumpStatus() {
if (g_TempCO >= MAX_TEMP) { //this should be the only time two pumps are allowed to work together
if (isPumpEnabled(PUMP_CWU1)) setPumpOn(PUMP_CWU1);
setPumpOn(PUMP_CO1);
return;
}
if (getManualControlMode()) return; //all below only in automatic mode.
if (g_BurnState == STATE_FIRESTART) {
setPumpOff(PUMP_CO1);
setPumpOff(PUMP_CWU1);
return;
}
if (g_TempCO < g_CurrentConfig.TMinPomp) {
setPumpOff(PUMP_CO1);
setPumpOff(PUMP_CWU1);
return;
}
if (g_needHeat == NEED_HEAT_CWU) {
uint8_t minTemp = max(g_CurrentConfig.TMinPomp, g_TempCWU + g_CurrentConfig.TDeltaCWU);
if (g_TempCO >= minTemp) {
setPumpOn(PUMP_CWU1);
}
else {
setPumpOff(PUMP_CWU1);
//Serial.println(F("too low to heat cwu"));
}
setPumpOff(PUMP_CO1);
return;
}
bool pco = isPumpOn(PUMP_CO1);
if (g_needHeat == NEED_HEAT_CO) { //co pump on - thermostat on or thermostat disabled (co pump always on)
if (!cond_willFallBelowHysteresisSoon(pco ? -0.1 : 0.1)) {
setPumpOn(PUMP_CO1);
} else {
setPumpOff(PUMP_CO1);
}
setPumpOff(PUMP_CWU1); //just to be sure
return;
}
//no need to heat from now...
uint8_t cl = cond_needCooling();
bool cw = g_CurrentConfig.SummerMode && isPumpEnabled(PUMP_CWU1) && isDallasEnabled(TSENS_CWU) && cl == 2;
if (cl != 0) {
setPumpOn(cw ? PUMP_CWU1 : PUMP_CO1);
setPumpOff(cw ? PUMP_CO1 : PUMP_CWU1);
return;
}
setPumpOff(PUMP_CWU1);
setPumpOff(PUMP_CO1);
}
bool isAlarm_HardwareProblem() {
if (!isDallasEnabled(TSENS_BOILER)) {
g_Alarm = "Czujnik temp CO";
return true;
}
if (g_CurrentConfig.FeederTempLimit != 0 && !isDallasEnabled(TSENS_FEEDER)) {
g_Alarm = "Czujnik podajnika";
return true;
}
return false;
}
bool isAlarm_Overheat() {
if (g_TempCO > MAX_TEMP) {
g_Alarm = "ZA GORACO";
return true;
}
return false;
}
bool isAlarm_feederOnFire() {
if (g_CurrentConfig.FeederTempLimit > 0 && g_TempFeeder > g_CurrentConfig.FeederTempLimit) {
g_Alarm = "Temp. podajnika";
return true;
}
return false;
}
#define NMIN 6
int firestartIsBurningCheck() {
bool isFirestart = g_BurnState == STATE_FIRESTART;
unsigned long tRun = millis() - g_CurStateStart;
if (isFirestart && tRun < FIRESTART_STABILIZE_TIME) return 0;
float fm = g_CurrentConfig.FireDetExhDt10 / 10.0; //exhaust temp over CO temp
float ctd = g_CurrentConfig.FireDetExhIncrD10 / 10.0; //exhaust temp increase by degrees
float cte = g_CurrentConfig.FireDetCOIncr10 / 10.0; //CO temp increase by degrees
float exhStart = g_InitialTempExh < g_InitialTempCO - EXHAUST_TEMP_DELTA_BELOW_CO ? g_InitialTempCO - EXHAUST_TEMP_DELTA_BELOW_CO : g_InitialTempExh; //jesli temp spalin jest ponizej temp kotla to znaczy ze komin sie wychlodzil bardziej niz kociol - nieprawidl. wartosc
float d = g_TempSpaliny - exhStart;
float e = g_TempCO - g_InitialTempCO;
float f = g_TempSpaliny - g_TempCO;
bool cond1 = g_TempSpaliny >= g_TempCO - EXHAUST_TEMP_DELTA_BELOW_CO;
bool cond3 = tRun > 2UL*FIRESTART_STABILIZE_TIME;
if (isDebugTime()) {
Serial.print("FC T:");
Serial.print(tRun/1000);
Serial.print(",d:");
Serial.print(d);
Serial.print(",ctd:");
Serial.print(ctd);
Serial.print(",C1:");
Serial.print(cond1);
Serial.print(",e:");
Serial.print(e);
Serial.print(",cte:");
Serial.print(cte);
Serial.print(",f:");
Serial.print(f);
Serial.print(",fm:");
Serial.print(fm);
Serial.print(",C3:");
Serial.print(cond3);
Serial.println();
}
if (ctd > 0) {
if (cond1) { //exh temp high enough
if (d >= ctd) return 1;
if (cond3 && exhStart > g_InitialTempCO - EXHAUST_TEMP_DELTA_BELOW_CO && g_dTExh > 0.5 && d + g_dTExh > ctd) return 2;
if (g_lastExhaustReads.GetCount() >= NMIN && tRun >= NMIN * TEMP_HISTORY_SAMPLE_TIME_MS) {
float dif = *g_lastExhaustReads.GetAt(-1) - *g_lastExhaustReads.GetAt(-NMIN);
if (dif > ctd) return 3;
}
}
}
if (cte > 0 && e >= cte) return 4;
if (fm > 0 && cond3) {
if (f >= fm) {
return 5;
}
}
return false;
}
//detect if fire has started in automatic fire start mode
bool cond_firestartIsBurning() {
int n = firestartIsBurningCheck();
if (isDebugTime()) {
Serial.print("FC:");
Serial.println(n);
}
return n != 0;
}
bool cond_noHeating() {
if (g_BurnState != STATE_P1 && g_BurnState != STATE_P2 && g_BurnState != STATE_FIRESTART) return false;
if (cond_firestartIsBurning()) return false;
//in P1 temperature is expected to go down, both exhaust and boiler water, so we cant use temp growth
if (g_CurrentConfig.NoHeatAlarmCycles == 0) return false; // no detection
if (g_TempCO > g_CurrentConfig.TMinPomp) return false; //if above the min temp we dont detect 'fire extinct'
if (g_BurnCyclesBelowMinTemp > g_CurrentConfig.NoHeatAlarmCycles)
{
//g_Alarm = "Wygaslo";
return true;
}
return false;
}
//no heating - fire went out, fuel run out, other
//in P1 temp is supposed to drop and so exhaust temp will drop as well, even if the fire is burning all the time
//so how we detect?
bool isAlarm_NoHeating() {
if (g_CurrentConfig.FireStartMode == FIRESTART_MODE_STARTSTOP) return false;
if (cond_noHeating()) {
g_Alarm = "Wygaslo";
return true;
}
return false;
}
bool cond_noHeating_Firestart() {
if (g_CurrentConfig.FireStartMode != FIRESTART_MODE_STARTSTOP) return false;
return cond_noHeating();
}