From 0fc42218a92fa0099591ad9ad893b39db168be39 Mon Sep 17 00:00:00 2001 From: Tyler Reddy Date: Sat, 31 Jan 2026 15:24:35 -0700 Subject: [PATCH 1/2] WIP, DOC: draft release notes (0.1.0) * Fixes gh-19. * Early draft of release notes infrastructure for the project, including rough draft of the release notes for the GFDL `0.1.0` release. --- docs/source/release.rst | 10 +++++ docs/source/release/0.1.0-notes.rst | 59 +++++++++++++++++++++++++++++ 2 files changed, 69 insertions(+) create mode 100644 docs/source/release.rst create mode 100644 docs/source/release/0.1.0-notes.rst diff --git a/docs/source/release.rst b/docs/source/release.rst new file mode 100644 index 0000000..faf3fd2 --- /dev/null +++ b/docs/source/release.rst @@ -0,0 +1,10 @@ +************* +Release Notes +************* + +This is the list of changes to GFDL between each release. + +.. toctree:: + :maxdepth: 1 + + release/0.1.0-notes diff --git a/docs/source/release/0.1.0-notes.rst b/docs/source/release/0.1.0-notes.rst new file mode 100644 index 0000000..0e87be0 --- /dev/null +++ b/docs/source/release/0.1.0-notes.rst @@ -0,0 +1,59 @@ +========================== +GFDL 0.1.0 Release Notes +========================== + +.. note:: GFDL 0.1.0 is not released yet! + +.. contents:: + +Gradient free deep learning (GFDL) 0.1.0 is the culmination of 6 +months of hard work. This first release contains three new estimators. +Our development attention will now shift to bug-fix releases on the +0.1.x branch, and on adding new features on the main branch. + +This release requires Python 3.12-3.14. + + +************************** +Highlights of this release +************************** + +* The new `gfdl.model.GFDLClassifier` is an estimator offering single and + multi-layer random vector functional link (RVFL) and extreme learning + machine (ELM) gradient-free neural networks. A regression equivalent, + `gfdl.model.GFDLRegressor` has also been added. +* The new `gfdl.model.EnsembleGFDLClassifier` offers a connected ensemble + of estimators for multi-layer RVFLs that contribute to model output via + soft or hard voting. + + +************ +New features +************ + + +``gfdl.model`` improvements +============================ +* Three new estimators that include single and multi layer extreme learning + machines (ELMs) and random vector functional link (RVFL) networks: + `gfdl.model.GFDLClassifier`, `gfdl.model.GFDLRegressor`, and + `gfdl.model.EnsembleGFDLClassifier`. + + + +******* +Authors +******* + + + +************************ +Issues closed for 0.1.0 +************************ + + +************************ +Pull requests for 0.1.0 +************************ + + From 4108f0fa67eaaf65db7d0f745a030099ec975505 Mon Sep 17 00:00:00 2001 From: Navamita Ray Date: Tue, 3 Feb 2026 09:52:04 -0700 Subject: [PATCH 2/2] DOCS: Add api links within release note. Add notes to toctree. --- docs/source/index.rst | 3 ++- docs/source/release/0.1.0-notes.rst | 10 +++++----- 2 files changed, 7 insertions(+), 6 deletions(-) diff --git a/docs/source/index.rst b/docs/source/index.rst index 6038aa6..7bc60c4 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -41,4 +41,5 @@ Quick example :hidden: :maxdepth: 2 - api/index \ No newline at end of file + api/index + release diff --git a/docs/source/release/0.1.0-notes.rst b/docs/source/release/0.1.0-notes.rst index 0e87be0..4176718 100644 --- a/docs/source/release/0.1.0-notes.rst +++ b/docs/source/release/0.1.0-notes.rst @@ -18,11 +18,11 @@ This release requires Python 3.12-3.14. Highlights of this release ************************** -* The new `gfdl.model.GFDLClassifier` is an estimator offering single and +* The new :class:`~gfdl.model.GFDLClassifier` is an estimator offering single and multi-layer random vector functional link (RVFL) and extreme learning machine (ELM) gradient-free neural networks. A regression equivalent, - `gfdl.model.GFDLRegressor` has also been added. -* The new `gfdl.model.EnsembleGFDLClassifier` offers a connected ensemble + :class:`~gfdl.model.GFDLRegressor` has also been added. +* The new :class:`~gfdl.model.EnsembleGFDLClassifier` offers a connected ensemble of estimators for multi-layer RVFLs that contribute to model output via soft or hard voting. @@ -36,8 +36,8 @@ New features ============================ * Three new estimators that include single and multi layer extreme learning machines (ELMs) and random vector functional link (RVFL) networks: - `gfdl.model.GFDLClassifier`, `gfdl.model.GFDLRegressor`, and - `gfdl.model.EnsembleGFDLClassifier`. + :class:`~gfdl.model.GFDLClassifier`, :class:`~gfdl.model.GFDLRegressor`, and + :class:`~gfdl.model.EnsembleGFDLClassifier`.