forked from steveicarus/iverilog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnettypes.cc
227 lines (186 loc) · 5.56 KB
/
nettypes.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*
* Copyright (c) 2012-2016 Stephen Williams ([email protected])
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "nettypes.h"
# include "netenum.h"
# include <iostream>
# include <cassert>
using namespace std;
ivl_type_s::~ivl_type_s()
{
}
/*
* The derived class may override this to provide a more accurate
* response.
*/
bool ivl_type_s::packed(void) const
{
return false;
}
long ivl_type_s::packed_width(void) const
{
return 1;
}
netranges_t ivl_type_s::slice_dimensions() const
{
return netranges_t();
}
ivl_variable_type_t ivl_type_s::base_type() const
{
return IVL_VT_NO_TYPE;
}
bool ivl_type_s::get_signed() const
{
return false;
}
bool ivl_type_s::get_scalar() const
{
return false;
}
bool ivl_type_s::type_compatible(ivl_type_t that) const
{
if (this == that)
return true;
return test_compatibility(that);
}
bool ivl_type_s::test_compatibility(ivl_type_t that) const
{
return test_equivalence(that);
}
bool ivl_type_s::type_equivalent(ivl_type_t that) const
{
if (this == that)
return true;
return test_equivalence(that);
}
bool ivl_type_s::test_equivalence(ivl_type_t) const
{
return false;
}
netarray_t::~netarray_t()
{
}
ivl_variable_type_t netarray_t::base_type() const
{
return element_type_->base_type();
}
unsigned long netrange_width(const netranges_t &packed,
unsigned int base_width)
{
unsigned wid = base_width;
for (netranges_t::const_iterator cur = packed.begin()
; cur != packed.end() ; ++cur) {
unsigned use_wid = cur->width();
wid *= use_wid;
}
return wid;
}
bool netrange_equivalent(const netranges_t &a, const netranges_t &b)
{
if (a.size() != b.size())
return false;
for (size_t i = 0; i < a.size(); i++) {
if (!a[i].equivalent(b[i]))
return false;
}
return true;
}
/*
* Given a netrange_t list (which represent packed dimensions) and a
* prefix of calculated index values, calculate the canonical offset
* and width of the resulting slice. In this case, the "sb" argument
* is an extra index of the prefix.
*/
bool prefix_to_slice(const netranges_t&dims, const std::list<long>&prefix,
long sb, long&loff, unsigned long&lwid)
{
assert(prefix.size() < dims.size());
// Figure out the width of the slice, given the number of
// prefix numbers there are. We don't need to look at the
// actual values yet, but we do need to know how many there
// are compared to the actual dimensions of the target. So do
// this by multiplying the widths of the dims that are NOT
// accounted for by the prefix or sb indices.
size_t acc_wid = 1;
netranges_t::const_iterator pcur = dims.end();
for (size_t idx = prefix.size()+1 ; idx < dims.size() ; idx += 1) {
-- pcur;
acc_wid *= pcur->width();
}
lwid = acc_wid; // lwid is now the final slice width.
// pcur is pointing to the dimension AFTER the dimension that
// we have an index for, so step back one, then this will be
// used with the sb index. Start accumulating in the acc_off
// the offset into the n-dimensional vector.
-- pcur;
if (sb < pcur->get_msb() && sb < pcur->get_lsb())
return false;
if (sb > pcur->get_msb() && sb > pcur->get_lsb())
return false;
long acc_off = 0;
if (pcur->get_msb() >= pcur->get_lsb())
acc_off += (sb - pcur->get_lsb()) * acc_wid;
else
acc_off += (pcur->get_lsb() - sb) * acc_wid;
// If there are no more prefix items, we are done.
if (prefix.empty()) {
loff = acc_off;
return true;
}
// Now similarly go through the prefix numbers, working
// through the dimensions until we run out. Accumulate a
// growing slice width (acc_wid) that is used to calculate the
// growing offset (acc_off).
list<long>::const_iterator icur = prefix.end();
do {
-- icur;
acc_wid *= pcur->width();
-- pcur;
if (pcur->get_msb() >= pcur->get_lsb())
acc_off += (*icur - pcur->get_lsb()) * acc_wid;
else
acc_off += (pcur->get_lsb() - *icur) * acc_wid;
} while (icur != prefix.begin());
// Got our final offset.
loff = acc_off;
return true;
}
bool packed_types_equivalent(ivl_type_t a, ivl_type_t b)
{
if (!a->packed() || !b->packed())
return false;
if (a->base_type() != b->base_type())
return false;
if (a->packed_width() != b->packed_width())
return false;
if (a->get_signed() != b->get_signed())
return false;
// Special case, even though enums are packed they are not equivalent,
// they are only assignment compatible to other packed types
if (dynamic_cast<const netenum_t*>(b))
return false;
return true;
}
bool packed_type_compatible(ivl_type_t type)
{
if (type->packed())
return true;
if (type->base_type() == IVL_VT_REAL)
return true;
return false;
}