-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest_workflow.py
154 lines (119 loc) · 5.47 KB
/
test_workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import inspect
import sys
from dataclasses import dataclass
from typing import List
from typing import Any
from typing import Collection, Iterable, Optional, Union, Mapping, Dict, Set, Tuple
import pytest
from latch.resources.workflow import _is_list_of_dataclasses_type
from latch.resources.workflow import _is_valid_samplesheet_parameter_type
from latch.resources.workflow import _is_optional_type
from latch.resources.workflow import _is_type_annotation
from latch.resources.workflow import _unpack_optional_type
from latch.resources.workflow import TypeAnnotation
PRIMITIVE_TYPES: List[type] = [int, float, bool, str]
COLLECTION_TYPES: List[TypeAnnotation] = [List[int], Dict[str, int], Set[int], Tuple[int], Mapping[str, int], Iterable[int], Collection[int]]
if sys.version_info >= (3, 10):
COLLECTION_TYPES += [list[int], dict[str, int], set[int], tuple[int]]
OPTIONAL_TYPES: List[TypeAnnotation] = [Optional[T] for T in (PRIMITIVE_TYPES + COLLECTION_TYPES)]
OPTIONAL_TYPES += [Union[T, None] for T in (PRIMITIVE_TYPES + COLLECTION_TYPES)]
if sys.version_info >= (3, 10):
OPTIONAL_TYPES += [T | None for T in (PRIMITIVE_TYPES + COLLECTION_TYPES)]
@dataclass
class FakeDataclass:
"""A dataclass for testing."""
foo: str
bar: int
# Enumerate the possible ways to declare a list or optional list of dataclasses
SAMPLESHEET_TYPES: List[TypeAnnotation] = [
List[FakeDataclass],
Optional[List[FakeDataclass]],
Union[List[FakeDataclass], None],
]
if sys.version_info >= (3, 10):
SAMPLESHEET_TYPES += [
list[FakeDataclass],
Optional[list[FakeDataclass]],
Union[list[FakeDataclass], None],
list[FakeDataclass] | None,
List[FakeDataclass] | None,
]
BAD_SAMPLESHEET_TYPES: List[TypeAnnotation] = PRIMITIVE_TYPES + COLLECTION_TYPES + OPTIONAL_TYPES
BAD_SAMPLESHEET_TYPES += [
Union[List[FakeDataclass], int],
Union[Optional[List[FakeDataclass]], int],
Optional[Union[List[FakeDataclass], int]],
Union[List[FakeDataclass], Optional[int]],
Union[Optional[int], List[FakeDataclass]],
List[Union[FakeDataclass, int]],
List[Optional[FakeDataclass]],
]
@pytest.mark.parametrize("dtype", SAMPLESHEET_TYPES)
def test_is_valid_samplesheet_parameter_type(dtype: TypeAnnotation) -> None:
"""
`_is_valid_samplesheet_parameter_type` should accept a type that is a list of dataclasses, or an
`Optional` list of dataclasses.
"""
assert _is_valid_samplesheet_parameter_type(dtype) is True
@pytest.mark.parametrize("dtype", BAD_SAMPLESHEET_TYPES)
def test_is_valid_samplesheet_parameter_type_rejects_invalid_types(dtype: TypeAnnotation) -> None:
"""
`_is_valid_samplesheet_parameter_type` should reject any other type.
"""
assert _is_valid_samplesheet_parameter_type(dtype) is False
def test_is_list_of_dataclasses_type() -> None:
"""
`_is_list_of_dataclasses_type` should accept a type that is a list of dataclasses.
"""
assert _is_list_of_dataclasses_type(List[FakeDataclass]) is True
@pytest.mark.parametrize("bad_type", [
str, # Not a list
int, # Not a list
List[str], # Not a list of dataclasses
List[int], # Not a list of dataclasses
FakeDataclass, # Not a list
])
def test_is_list_of_dataclasses_type_rejects_bad_type(bad_type: type) -> None:
"""
`_is_list_of_dataclasses_type` should reject anything else.
"""
assert _is_list_of_dataclasses_type(bad_type) is False
def test_is_list_of_dataclasses_type_raises_if_not_a_type() -> None:
"""
`is_list_of_dataclasses_type` should raise a `TypeError` if the input is not a type.
"""
with pytest.raises(TypeError):
_is_list_of_dataclasses_type([FakeDataclass("hello", 1)])
@pytest.mark.parametrize("dtype", OPTIONAL_TYPES)
def test_is_optional_type(dtype: TypeAnnotation) -> None:
"""`_is_optional_type` should return True for `Optional[T]` types."""
assert _is_optional_type(dtype) is True
@pytest.mark.parametrize("dtype", PRIMITIVE_TYPES + COLLECTION_TYPES)
def test_is_optional_type_returns_false_if_not_optional(dtype: TypeAnnotation) -> None:
"""`_is_optional_type` should return False for non-Optional types."""
assert _is_optional_type(dtype) is False
@pytest.mark.parametrize("dtype", PRIMITIVE_TYPES + COLLECTION_TYPES)
def test_unpack_optional_type(dtype: TypeAnnotation) -> None:
"""`_unpack_optional_type()` should return the base type of `Optional[T]` types."""
assert _unpack_optional_type(Optional[dtype]) is dtype
assert _unpack_optional_type(Union[dtype, None]) is dtype
if sys.version_info >= (3, 10):
assert _unpack_optional_type(dtype | None) is dtype
@pytest.mark.parametrize("annotation", PRIMITIVE_TYPES + COLLECTION_TYPES + OPTIONAL_TYPES)
def test_is_type_annotation(annotation: TypeAnnotation) -> None:
"""
`_is_type_annotation()` should return True for any valid type annotation.
"""
assert _is_type_annotation(annotation) is True
def test_is_type_annotation_returns_false_if_empty() -> None:
"""
`_is_type_annotation()` should only return False if the annotation is `Parameter.empty`.
"""
assert _is_type_annotation(inspect.Parameter.empty) is False
@pytest.mark.parametrize("bad_annotation", [1, "abc", [1, 2], {"foo": 1}, FakeDataclass("hello", 1)])
def test_is_type_annotation_raises_if_annotation_is_not_a_type(bad_annotation: Any) -> None:
"""
`_is_type_annotation()` should raise `TypeError` for any non-type object.
"""
with pytest.raises(TypeError):
_is_type_annotation(bad_annotation)