-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaaa.py
340 lines (292 loc) · 14 KB
/
paaa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import numpy as np
import itertools
from pymor.core.base import BasicObject
from pymor.core.logger import getLogger
from pymor.models.transfer_function import TransferFunction
class pAAAReductor(BasicObject):
"""Reductor implementing the parametric AAA algorithm.
The reductor implements the parametric AAA algorithm and can be used either with
data or a given full-order model which has a `transfer_function` attribute. MIMO
data is accepted.
Parameters
----------
data
If `fom` is `None` a tuple where the first value corresponds to sampling values
and the second value contains samples. Sampling values are represented as a
nested list `svs` such that `svs[i]` corresponds to sampling values of the `i-th`
variable. Samples are represented as a tensor `S`. E.g., for 3 inputs `S[i,j,k]`
corresponds to the sampled value at `(svs[0][i],svs[1][j],svs[2][k])`. In the
MIMO case `S[i,j,k]` represents a matrix of dimension `dim_input` times `dim_output`.
If `fom` is not `None` data only contains a list of sampling values.
fom
|TransferFunction| or |Model| with a `transfer_function` attribute.
conjugate
Wether to compute complex conjugates of first variables and enforce interpolation in
complex conjugate pairs (allows for constructing real system matrices).
nsp_conv
If `true`, converge algorithm if dimension of nullspace of Loewner matrix
is numerically greater than 1.
nsp_tol
Tolerance for null space of higher-dimensional Loewner matrix to check for
interpolation or convergence.
post_process
Wether to do post-processing or not.
L_rk_tol
Tolerance for ranks of 1-D Loewner matrices computed in post-processing.
"""
def __init__(self, data, fom=None, conjugate=True, nsp_conv=True, nsp_tol=1e-14, post_process=True, L_rk_tol=1e-8):
assert data is not None or fom is not None
if fom is not None:
assert isinstance(fom, TransferFunction) or hasattr(fom, 'transfer_function')
if not isinstance(fom, TransferFunction):
fom = fom.transfer_function
self.num_vars = 1 + len(fom.parameters)
assert len(data) == self.num_vars
self.sampling_values = data
self.parameters = fom.parameters
sampling_grid = np.meshgrid(*(sv for sv in data), indexing='ij')
if fom.dim_input == 1 and fom.dim_output == 1:
self.samples = np.empty([*(len(sv) for sv in data)])
for idc in itertools.product(*(range(ss) for ss in self.samples.shape)):
params = {}
for i, p in enumerate(fom.parameters.keys()):
params[p] = sampling_grid[i+1][idc]
self.samples[idc] = fom.eval_tf(sampling_grid[0][idc], mu=params)
else:
sample_shape = [*(len(sv) for sv in data)]
sample_shape.append(fom.dim_output)
sample_shape.append(fom.dim_input)
self.samples = np.empty(sample_shape)
for idc in itertools.product(*(range(ss) for ss in self.samples.shape[:-2])):
params = {}
for i, p in enumerate(fom.parameters.keys()):
params[p] = sampling_grid[i+1][idc]
self.samples[idc] = fom.eval_tf(sampling_grid[0][idc], mu=params)
else:
assert len(data) == 2
self.sampling_values = data[0]
self.samples = data[1]
self.num_vars = len(data[0])
self.parameters = {}
for i in range(self.num_vars):
self.parameters['p' + str(i)] = 1
self.__auto_init(locals())
def reduce(self, tol=1e-3, max_iters=None):
logger = getLogger('pymor.reductors.AAA.reduce')
svs = self.sampling_values
samples = self.samples
# add complex conjugate samples
if self.conjugate:
for i in range(len(svs[0])):
s = svs[0][i]
if np.conj(s) not in svs[0]:
svs[0] = np.append(svs[0], np.conj(s))
samples = np.vstack((samples, np.conj(samples[i, None])))
num_vars = len(svs)
max_samples = np.max(np.abs(samples))
rel_tol = tol * max_samples
# Transform samples for MIMO case
if len(samples.shape) != len(svs):
assert len(samples.shape) == len(svs) + 2
dim_input = samples.shape[-2]
dim_output = samples.shape[-1]
samples_T = np.empty(samples.shape[:-2], dtype=samples.dtype)
w = np.random.uniform(size=(1, dim_input))
v = np.random.uniform(size=(dim_output, 1))
w = w / np.linalg.norm(w)
v = v / np.linalg.norm(v)
for li in list(itertools.product(*(range(s) for s in samples.shape[:-2]))):
samples_T[li] = w @ samples[li] @ v
samples_orig = samples
samples = samples_T
else:
dim_input = 1
dim_output = 1
# initilize data partitions, error, max iterations
err = np.inf
itpl_part = [*([] for _ in range(num_vars))]
if max_iters is None:
max_iters = [*(len(s)-1 for s in svs)]
assert len(max_iters) == len(svs)
# start iteration with constant function
bary_func = np.vectorize(lambda *args: np.mean(samples))
# iteration counter
j = 0
while np.any([*(len(i) < mi for (i, mi) in zip(itpl_part, max_iters))]):
# compute approximation error over entire sampled data set
grid = np.meshgrid(*(sv for sv in svs), indexing='ij')
err_mat = np.abs(bary_func(*(g for g in grid))-samples)
# set errors to zero such that new interpolation points are consistent with max_iters
zero_idx = []
for i in range(num_vars):
if len(itpl_part[i]) >= max_iters[i]:
zero_idx.append(list(range(samples.shape[i])))
else:
zero_idx.append(itpl_part[i])
err_mat[np.ix_(*(zi for zi in zero_idx))] = 0
err = np.max(err_mat)
j += 1
logger.info(f'Relative error at step {j}: {err/max_samples:.5e}, number of interpolation points {[*(len(ip) for ip in itpl_part)]}')
# stopping criterion based on relative approximation error
if err <= rel_tol:
break
greedy_idx = np.unravel_index(err_mat.argmax(), err_mat.shape)
for i in range(num_vars):
if greedy_idx[i] not in itpl_part[i] and len(itpl_part[i]) < max_iters[i]:
itpl_part[i].append(greedy_idx[i])
# perform double interpolation step to enforce real state-space representation
if i == 0 and self.conjugate and np.imag(svs[i][greedy_idx[i]]) != 0:
conj_sample = np.conj(svs[i][greedy_idx[i]])
conj_idx = np.where(svs[0] == conj_sample)[0]
itpl_part[i].append(conj_idx[0])
# solve LS problem
L = full_nd_loewner(samples, svs, itpl_part)
_, S, V = np.linalg.svd(L)
VH = np.conj(V.T)
coefs = VH[:, -1:]
# post-processing for non-minimal interpolants
d_nsp = np.sum(S/S[0] < self.nsp_tol)
if d_nsp > 1:
if self.post_process:
logger.info('Non-minimal order interpolant computed. Starting post-processing.')
pp_coefs, pp_itpl_part = _post_processing(samples, svs, itpl_part, d_nsp, self.L_rk_tol)
if pp_coefs is not None:
coefs, itpl_part = pp_coefs, pp_itpl_part
else:
logger.warning('Post-processing failed. Consider reducing "L_rk_tol".')
else:
logger.warning('Non-minimal order interpolant computed.')
# update barycentric form
itpl_samples = samples[np.ix_(*(ip for ip in itpl_part))]
itpl_samples = np.reshape(itpl_samples, -1)
itpl_nodes = [*(sv[lp] for sv, lp in zip(svs, itpl_part))]
bary_func = np.vectorize(make_bary_func(itpl_nodes, itpl_samples, coefs))
if self.nsp_conv and d_nsp >= 1:
logger.info('Converged due to non-trivial null space of Loewner matrix.')
break
# in MIMO case construct barycentric form based on matrix/vector samples
if dim_input != 1 or dim_output != 1:
itpl_samples = samples_orig[np.ix_(*(ip for ip in itpl_part))]
itpl_samples = np.reshape(itpl_samples, (-1, dim_input, dim_output))
bary_func = make_bary_func(itpl_nodes, itpl_samples, coefs, dim_input, dim_output)
return TransferFunction(dim_input, dim_output, lambda s, mu: bary_func(s, *(mu[p] for p in self.parameters)), parameters=self.parameters)
def nd_loewner(samples, svs, itpl_part):
"""Compute higher-dimensional Loewner matrix using only LS partition."""
d = len(samples.shape)
ls_part = _ls_part(itpl_part, svs)
s0 = svs[0]
s = s0[itpl_part[0]]
sh = s0[ls_part[0]]
sd = sh[:, np.newaxis] - s[np.newaxis]
sdpd = sd
for i in range(1, d):
p0 = svs[i]
p = p0[itpl_part[i]]
ph = p0[ls_part[i]]
pd = ph[:, np.newaxis] - p[np.newaxis]
sdpd = np.kron(sdpd, pd)
samples0 = samples[np.ix_(*(p for p in itpl_part))]
samples0 = np.reshape(samples0, (-1, np.prod(samples0.shape)))
samples1 = samples[np.ix_(*(p for p in ls_part))]
samples1 = np.reshape(samples1, (-1, np.prod(samples1.shape)))
samplesd = samples1.T - samples0
return samplesd / sdpd
def full_nd_loewner(samples, svs, itpl_part):
"""Compute higher-dimensional Loewner matrix taking all errors into account."""
L = nd_loewner(samples, svs, itpl_part)
range_S = range(len(svs))
# consider all combinations of variables coming from interpolation vs LS partition
for i in itertools.product(*([0, 1] for _ in range_S)):
# skip cases corresponding to all interpolated or all LS fit
if i == tuple(len(svs)*[0]) or i == tuple(len(svs)*[1]):
continue
for j in itertools.product(*(itpl_part[k] for k in range_S if i[k] == 0)):
l_j = list(j)
for ii in range(len(i)):
if i[ii] == 1:
l_j.insert(ii, slice(None))
samples0 = samples[tuple(l_j)]
svs0 = [svs[k] for k in range_S if i[k] == 1]
itpl_part0 = [itpl_part[k] for k in range_S if i[k] == 1]
T_mat = 1
for k in range_S:
if i[k] == 1:
T_new = np.eye(len(itpl_part[k]))
else:
idx = np.where(np.array(itpl_part[k]) == l_j[k])[0][0]
T_new = np.eye(1, len(itpl_part[k]), idx)
T_mat = np.kron(T_mat, T_new)
LL = nd_loewner(samples0, svs0, itpl_part0)
L = np.vstack([L, LL @ T_mat])
return L
def make_bary_func(itpl_nodes, itpl_vals, coefs, dim_input=1, dim_output=1):
"""Return function handle for multivariate barycentric form."""
def bary_func(*args):
pd = 1
# this loop is for pole cancellation which occurs at interpolation nodes
for i in range(len(itpl_nodes)):
d = args[i] - itpl_nodes[i]
d_zero = d[np.abs(d) < 1e-14]
if len(d_zero) > 0:
d_min_idx = np.argmin(np.abs(d))
d = np.eye(1, len(d), d_min_idx)
else:
d = np.reciprocal(d)
pd = np.kron(pd, d)
if dim_input == 1 and dim_output == 1:
return np.divide(np.inner(coefs.T, np.multiply(pd, itpl_vals)), np.inner(coefs.T, pd))
else:
pd = np.squeeze(pd)
m = pd[:, None, None] * itpl_vals
num = np.inner(m.T, coefs.T)
denom = np.inner(pd.T, coefs.T)
nd = np.tensordot(num, np.reciprocal(denom), 0)
nd = np.squeeze(nd)
return nd
return bary_func
def _ls_part(itpl_part, svs):
"""Compute least-squares partition based on interpolation partition."""
ls_part = []
for p, s in zip(itpl_part, svs):
idx = np.arange(len(s))
idx = np.delete(idx, p)
ls_part.append(list(idx))
return ls_part
def _post_processing(samples, svs, itpl_part, d_nsp, L_rk_tol):
"""Compute coefficients/partition to construct minimal interpolant."""
num_vars = len(svs)
max_idx = np.argmax([*(len(ip) for ip in itpl_part)])
max_rks = []
for i in range(num_vars):
max_rk = 0
# we don't need to compute this max rank since we exploit nullspace structure
if i == max_idx:
max_rks.append(len(itpl_part[max_idx])-1)
continue
shapes = []
for j in range(num_vars):
if i != j:
shapes.append(samples.shape[j])
# compute max ranks of all possible 1-D Loewner matrices
for idc in itertools.product(*(range(s) for s in shapes)):
l_idc = list(idc)
l_idc.insert(i, slice(None))
L = nd_loewner(samples[tuple(l_idc)], [svs[i]], [itpl_part[i]])
rk = np.linalg.matrix_rank(L, tol=L_rk_tol)
if rk > max_rk:
max_rk = rk
max_rks.append(max_rk)
# exploit nullspace structure to obtain final max rank
denom = np.prod([*(len(itpl_part[k])-max_rks[k] for k in range(len(itpl_part)))])
if denom == 0 or d_nsp % denom != 0:
return None, None
max_rks[max_idx] = len(itpl_part[max_idx]) - d_nsp / denom
max_rks[max_idx] = round(max_rks[max_idx])
for i in range(len(max_rks)):
itpl_part[i] = itpl_part[i][0:max_rks[i]+1]
# solve LS problem
L = full_nd_loewner(samples, svs, itpl_part)
_, S, V = np.linalg.svd(L)
VH = np.conj(V.T)
coefs = VH[:, -1:]
return coefs, itpl_part