-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathusing-tensorflow-to-train-a-shallow-nn-with-stochastic-gradient-descent.html
1278 lines (1055 loc) · 89.7 KB
/
using-tensorflow-to-train-a-shallow-nn-with-stochastic-gradient-descent.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<!--[if lt IE 9 ]><html class="no-js oldie" lang="zh-hant-tw"> <![endif]-->
<!--[if IE 9 ]><html class="no-js oldie ie9" lang="zh-hant-tw"> <![endif]-->
<!--[if (gte IE 9)|!(IE)]><!-->
<html class="no-js" lang="zh-hant-tw">
<!--<![endif]-->
<head>
<!--- basic page needs
================================================== -->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="author" content="Lee Meng" />
<title>LeeMeng - Using TensorFlow to Train a Shallow NN with Stochastic Gradient Descent</title>
<!--- article-specific meta data
================================================== -->
<meta name="description" content="The goal here is to progressively train deeper and more accurate models using TensorFlow. We will first load the notMNIST dataset which we have done data cleaning. For the classification problem, we will first train two logistic regression models use simple gradient descent, stochastic gradient descent (SGD) respectively for optimization to see the difference between these optimizers." />
<meta name="keywords" content="Python, TensorFlow, Deep Learning, Neural Networks, Optimization, NotMNIST, Machine Learning, Image Recognition, SGD, Gradient Descent, Deep Learning by Google, Machine Learning Engineer by kaggle, Udacity" />
<meta name="tags" content="Python" />
<meta name="tags" content="TensorFlow" />
<meta name="tags" content="Deep Learning" />
<meta name="tags" content="Neural Networks" />
<meta name="tags" content="Optimization" />
<meta name="tags" content="NotMNIST" />
<meta name="tags" content="Machine Learning" />
<meta name="tags" content="Image Recognition" />
<meta name="tags" content="SGD" />
<meta name="tags" content="Gradient Descent" />
<meta name="tags" content="Deep Learning by Google" />
<meta name="tags" content="Machine Learning Engineer by kaggle" />
<meta name="tags" content="Udacity" />
<!--- Open Graph Object metas
================================================== -->
<meta property="og:image" content="https://leemeng.tw/theme/images/background/default.jpg" />
<meta property="og:type" content="article" />
<meta property="og:url" content="https://leemeng.tw/using-tensorflow-to-train-a-shallow-nn-with-stochastic-gradient-descent.html" />
<meta property="og:title" content="Using TensorFlow to Train a Shallow NN with Stochastic Gradient Descent" />
<meta property="og:description" content="The goal here is to progressively train deeper and more accurate models using TensorFlow. We will first load the notMNIST dataset which we have done data cleaning. For the classification problem, we will first train two logistic regression models use simple gradient descent, stochastic gradient descent (SGD) respectively for optimization to see the difference between these optimizers." />
<!-- mobile specific metas
================================================== -->
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- CSS
================================================== -->
<!--for customized css in individual page-->
<link rel="stylesheet" type="text/css" href="https://leemeng.tw/theme/css/bootstrap.min.css">
<!--for showing toc navigation which slide in from left-->
<link rel="stylesheet" type="text/css" href="https://leemeng.tw/theme/css/toc-nav.css">
<!--for responsive embed youtube video-->
<link rel="stylesheet" type="text/css" href="https://leemeng.tw/theme/css/embed_youtube.css">
<!--for prettify dark-mode result-->
<link rel="stylesheet" type="text/css" href="https://leemeng.tw/theme/css/darkmode.css">
<link rel="stylesheet" type="text/css" href="https://leemeng.tw/theme/css/base.css">
<link rel="stylesheet" type="text/css" href="https://leemeng.tw/theme/css/vendor.css">
<link rel="stylesheet" type="text/css" href="https://leemeng.tw/theme/css/main.css">
<link rel="stylesheet" type="text/css" href="https://leemeng.tw/theme/css/ipython.css">
<link rel="stylesheet" type="text/css" href='https://leemeng.tw/theme/css/progress-bar.css' />
<!--TiqueSearch-->
<link href="https://fonts.googleapis.com/css?family=Roboto:100,300,400">
<link rel="stylesheet" href="https://leemeng.tw/theme/tipuesearch/css/normalize.css">
<link rel="stylesheet" href="https://leemeng.tw/theme/tipuesearch/css/tipuesearch.css">
<!-- script
================================================== -->
<script src="https://leemeng.tw/theme/js/modernizr.js"></script>
<script src="https://leemeng.tw/theme/js/pace.min.js"></script>
<!-- favicons
================================================== -->
<link rel="shortcut icon" href="../theme/images/favicon.ico" type="image/x-icon"/>
<link rel="icon" href="../theme/images/favicon.ico" type="image/x-icon"/>
<!-- Global Site Tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-106559980-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments)};
gtag('js', new Date());
gtag('config', 'UA-106559980-1');
</script>
</head>
<body id="top">
<!-- header
================================================== -->
<header class="s-header">
<div class="header-logo">
<a class="site-logo" href="../index.html"><img src="https://leemeng.tw/theme/images/logo.png" alt="Homepage"></a>
</div>
<!--navigation bar ref: http://jinja.pocoo.org/docs/2.10/tricks/-->
<nav class="header-nav-wrap">
<ul class="header-nav">
<li>
<a href="../index.html#home">Home</a>
</li>
<li>
<a href="../index.html#about">About</a>
</li>
<li>
<a href="../index.html#projects">Projects</a>
</li>
<li class="current">
<a href="../blog.html">Blog</a>
</li>
<li>
<a href="https://demo.leemeng.tw">Demo</a>
</li>
<li>
<a href="../books.html">Books</a>
</li>
<li>
<a href="../index.html#contact">Contact</a>
</li>
</ul>
<!--<div class="search-container">-->
<!--<form action="../search.html">-->
<!--<input type="text" placeholder="Search.." name="search">-->
<!--<button type="submit"><i class="im im-magnifier" aria-hidden="true"></i></button>-->
<!--</form>-->
<!--</div>-->
</nav>
<a class="header-menu-toggle" href="#0"><span>Menu</span></a>
</header> <!-- end s-header -->
<!--TOC navigation displayed when clicked from left-navigation button-->
<div id="tocNav" class="overlay" onclick="closeTocNav()">
<div class="overlay-content">
<div id="toc"><ul><li><a class="toc-href" href="#" title="Using TensorFlow to Train a Shallow NN with Stochastic Gradient Descent">Using TensorFlow to Train a Shallow NN with Stochastic Gradient Descent</a><ul><li><a class="toc-href" href="#Import-libraries" title="Import libraries">Import libraries</a></li><li><a class="toc-href" href="#Load-notMNIST-dataset" title="Load notMNIST dataset">Load notMNIST dataset</a></li><li><a class="toc-href" href="#Reformat-data-for-easier-training" title="Reformat data for easier training">Reformat data for easier training</a></li><li><a class="toc-href" href="#Logistic-regression-with-gradient-descent" title="Logistic regression with gradient descent">Logistic regression with gradient descent</a><ul><li><a class="toc-href" href="#Build-the-Tensorflow-computation-graph" title="Build the Tensorflow computation graph">Build the Tensorflow computation graph</a></li><li><a class="toc-href" href="#Gradient-descent-by-iterating-computation-graph" title="Gradient descent by iterating computation graph">Gradient descent by iterating computation graph</a></li></ul></li><li><a class="toc-href" href="#Logistic-regression-with-SGD_1" title="Logistic regression with SGD">Logistic regression with SGD</a><ul><li><a class="toc-href" href="#Build-computation-graph" title="Build computation graph">Build computation graph</a></li><li><a class="toc-href" href="#Iterate-using-SGD" title="Iterate using SGD">Iterate using SGD</a></li></ul></li><li><a class="toc-href" href="#2-layer-NN-with-ReLU-units_1" title="2-layer NN with ReLU units">2-layer NN with ReLU units</a><ul><li><a class="toc-href" href="#Build-compuation-graph" title="Build compuation graph">Build compuation graph</a></li><li><a class="toc-href" href="#Run-the-iterations" title="Run the iterations">Run the iterations</a></li></ul></li><li><a class="toc-href" href="#Summary_1" title="Summary">Summary</a></li></ul></li></ul></div>
</div>
</div>
<!--custom images with icon shown on left nav-->
<!--the details are set in `pelicanconf.py` as `LEFT_NAV_IMAGES`-->
<article class="blog-single">
<!-- page header/blog hero, use custom cover image if available
================================================== -->
<div class="page-header page-header--single page-hero" style="background-image:url(https://leemeng.tw/theme/images/background/default.jpg)">
<div class="row page-header__content narrow">
<article class="col-full">
<div class="page-header__info">
<div class="page-header__cat">
<a href="https://leemeng.tw/tag/python.html" rel="tag">Python</a>
<a href="https://leemeng.tw/tag/tensorflow.html" rel="tag">TensorFlow</a>
<a href="https://leemeng.tw/tag/deep-learning.html" rel="tag">Deep Learning</a>
<a href="https://leemeng.tw/tag/neural-networks.html" rel="tag">Neural Networks</a>
<a href="https://leemeng.tw/tag/optimization.html" rel="tag">Optimization</a>
</div>
</div>
<h1 class="page-header__title">
<a href="https://leemeng.tw/using-tensorflow-to-train-a-shallow-nn-with-stochastic-gradient-descent.html" title="">
Using TensorFlow to Train a Shallow NN with Stochastic Gradient Descent
</a>
</h1>
<ul class="page-header__meta">
<li class="date">2017-09-21 (Thu)</li>
<li class="page-view">
3,554 views
</li>
</ul>
</article>
</div>
</div> <!-- end page-header -->
<div class="KW_progressContainer">
<div class="KW_progressBar"></div>
</div>
<div class="row blog-content" style="position: relative">
<div id="left-navigation">
<div id="search-wrap">
<i class="im im-magnifier" aria-hidden="true"></i>
<div id="search">
<form action="../search.html">
<div class="tipue_search_right"><input type="text" name="q" id="tipue_search_input" pattern=".{2,}" title="想搜尋什麼呢?(請至少輸入兩個字)" required></div>
</form>
</div>
</div>
<div id="toc-wrap">
<a title="顯示/隱藏 文章章節">
<i class="im im-menu" aria-hidden="true" onclick="toggleTocNav()"></i>
</a>
</div>
<div id="social-wrap" style="cursor: pointer">
<a class="open-popup" title="訂閱最新文章">
<i class="im im-newspaper-o" aria-hidden="true"></i>
</a>
</div>
<div id="social-wrap">
<a href="https://www.facebook.com/sharer/sharer.php?u=https%3A//leemeng.tw/using-tensorflow-to-train-a-shallow-nn-with-stochastic-gradient-descent.html" target="_blank" title="分享到 Facebook">
<i class="im im-facebook" aria-hidden="true"></i>
</a>
</div>
<div id="social-wrap">
<a href="https://www.linkedin.com/shareArticle?mini=true&url=https%3A//leemeng.tw/using-tensorflow-to-train-a-shallow-nn-with-stochastic-gradient-descent.html&title=Using%20TensorFlow%20to%20Train%20a%20Shallow%20NN%20with%20Stochastic%20Gradient%20Descent&summary=The%20goal%20here%20is%20to%20progressively%20train%20deeper%20and%20more%20accurate%20models%20using%20TensorFlow.%20We%20will%20first%20load%20the%20notMNIST%20dataset%20which%20we%20have%20done%20data%20cleaning.%20For%20the%20classification%20problem%2C%20we%20will%20first%20train%20two%20logistic%20regression%20models%20use%20simple%20gradient%20descent%2C%20stochastic%20gradient%20descent%20%28SGD%29%20respectively%20for%20optimization%20to%20see%20the%20difference%20between%20these%20optimizers.&source=https%3A//leemeng.tw/using-tensorflow-to-train-a-shallow-nn-with-stochastic-gradient-descent.html" target="_blank" title="分享到 LinkedIn">
<i class="im im-linkedin" aria-hidden="true"></i>
</a>
</div>
<div id="social-wrap">
<a href="https://twitter.com/intent/tweet?text=Using%20TensorFlow%20to%20Train%20a%20Shallow%20NN%20with%20Stochastic%20Gradient%20Descent&url=https%3A//leemeng.tw/using-tensorflow-to-train-a-shallow-nn-with-stochastic-gradient-descent.html&hashtags=python,tensorflow,deep-learning,neural-networks,optimization,notmnist,machine-learning,image-recognition,sgd,gradient-descent,deep-learning-by-google,machine-learning-engineer-by-kaggle,udacity" target="_blank" title="分享到 Twitter">
<i class="im im-twitter" aria-hidden="true"></i>
</a>
</div>
<!--custom images with icon shown on left nav-->
</div>
<div class="col-full blog-content__main">
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The goal here is to progressively train deeper and more accurate models using TensorFlow. We will first load the notMNIST dataset which we have done data cleaning. For the classification problem, we will first train two logistic regression models use simple gradient descent, stochastic gradient descent (SGD) respectively for optimization to see the difference between these optimizers.</p>
<p>Finally, train a Neural Network with one-hidden layer using ReLU activation units to see whether we can boost our model's performance further.</p>
<p>Previously in <a href="https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/udacity/1_notmnist.ipynb">1_notmnist.ipynb</a>, we created a pickle with formatted datasets for training, development and testing on the <a href="http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html">notMNIST dataset</a>.</p>
<p>This post is modified from the <a href="https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/udacity/2_fullyconnected.ipynb">jupyter notebook</a> originated from the Udacity MOOC course: <a href="https://www.udacity.com/course/deep-learning--ud730">Deep learning by Google</a>.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Import-libraries">Import libraries<a class="anchor-link" href="#Import-libraries">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># These are all the modules we'll be using later. Make sure you can import them</span>
<span class="c1"># before proceeding further.</span>
<span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">print_function</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">tensorflow</span> <span class="k">as</span> <span class="nn">tf</span>
<span class="kn">from</span> <span class="nn">six.moves</span> <span class="kn">import</span> <span class="n">cPickle</span> <span class="k">as</span> <span class="n">pickle</span>
<span class="kn">from</span> <span class="nn">six.moves</span> <span class="kn">import</span> <span class="nb">range</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Load-notMNIST-dataset">Load notMNIST dataset<a class="anchor-link" href="#Load-notMNIST-dataset">¶</a></h2><p>This time we will use the dataset which has been normalized and randomized before to omit the data preprocessing step.</p>
<p>Tips:</p>
<ul>
<li>Release memory after loading big-size dataset using <code>del</code>. </li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="n">pickle_file</span> <span class="o">=</span> <span class="s1">'datasets/notMNIST.pickle'</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">pickle_file</span><span class="p">,</span> <span class="s1">'rb'</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
<span class="n">save</span> <span class="o">=</span> <span class="n">pickle</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Dataset size: </span><span class="si">{:.1f}</span><span class="s1"> MB'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">stat</span><span class="p">(</span><span class="n">pickle_file</span><span class="p">)</span><span class="o">.</span><span class="n">st_size</span> <span class="o">/</span> <span class="mi">2</span> <span class="o">**</span> <span class="mi">20</span><span class="p">))</span>
<span class="n">train_dataset</span> <span class="o">=</span> <span class="n">save</span><span class="p">[</span><span class="s1">'train_dataset'</span><span class="p">]</span>
<span class="n">train_labels</span> <span class="o">=</span> <span class="n">save</span><span class="p">[</span><span class="s1">'train_labels'</span><span class="p">]</span>
<span class="n">valid_dataset</span> <span class="o">=</span> <span class="n">save</span><span class="p">[</span><span class="s1">'valid_dataset'</span><span class="p">]</span>
<span class="n">valid_labels</span> <span class="o">=</span> <span class="n">save</span><span class="p">[</span><span class="s1">'valid_labels'</span><span class="p">]</span>
<span class="n">test_dataset</span> <span class="o">=</span> <span class="n">save</span><span class="p">[</span><span class="s1">'test_dataset'</span><span class="p">]</span>
<span class="n">test_labels</span> <span class="o">=</span> <span class="n">save</span><span class="p">[</span><span class="s1">'test_labels'</span><span class="p">]</span>
<span class="k">del</span> <span class="n">save</span> <span class="c1"># hint to help gc free up memory</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Training set'</span><span class="p">,</span> <span class="n">train_dataset</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">train_labels</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Validation set'</span><span class="p">,</span> <span class="n">valid_dataset</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">valid_labels</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Test set'</span><span class="p">,</span> <span class="n">test_dataset</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">test_labels</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>Dataset size: 658.8 MB
Training set (200000, 28, 28) (200000,)
Validation set (10000, 28, 28) (10000,)
Test set (10000, 28, 28) (10000,)
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Reformat-data-for-easier-training">Reformat data for easier training<a class="anchor-link" href="#Reformat-data-for-easier-training">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Reformat both pixels(features) and labels that's more adapted to the models we're going to train:</p>
<ul>
<li>features(pixels) as a flat matrix with shape = (#total pixels, #instances)</li>
</ul>
<center><img src="images/flattened_features.png" style="width:70%"/><caption><center> <u><font color="purple"> Figure 1</font></u><font color="purple">: Flattened features <br/> <font color="black"> </font></font></center><ul>
<li>labels as float 1-hot encodings with shape = (#type of labels, #instances)</li>
</ul>
<center><img src="images/flattened_ground_true.png" style="width:70%"/><caption><center> <u><font color="purple"> Figure 2</font></u><font color="purple">: Flattened labels <br/> <font color="black"> </font></font></center>
</caption></center></caption></center></div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Tips:</p>
<ul>
<li>Notice that we use different shape of matrix with the original TensorFlow example <a href="https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/udacity/2_fullyconnected.ipynb">nookbook</a> because I think it's easier to understand how matrix multiplication work by imagining each training/test instance as a column vector. But in response to this change, we have to modify several code in order to make it works!<ul>
<li>Transpose logits and labels when calling <code>tf.nn.softmax_cross_entropy_with_logits</code></li>
<li>Set <code>dim = 0</code> when using <code>tf.nn.softmax</code></li>
<li>Set <code>axis = 0</code> when using <code>np.argmax</code> to compute accuracy</li>
</ul>
</li>
<li>One-hot encode labels by compare the label with the 0-9 array and transform True/False array as float array use <code>astype(np.float32)</code></li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="n">image_size</span> <span class="o">=</span> <span class="mi">28</span>
<span class="n">num_labels</span> <span class="o">=</span> <span class="mi">10</span>
<span class="k">def</span> <span class="nf">reformat</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">labels</span><span class="p">):</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">dataset</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">image_size</span> <span class="o">*</span> <span class="n">image_size</span><span class="p">))</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span><span class="o">.</span><span class="n">T</span>
<span class="c1"># Map 0 to [1.0, 0.0, 0.0 ...], 1 to [0.0, 1.0, 0.0 ...]</span>
<span class="n">labels</span> <span class="o">=</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">num_labels</span><span class="p">)</span> <span class="o">==</span> <span class="n">labels</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">])</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span><span class="o">.</span><span class="n">T</span> <span class="c1"># key point1</span>
<span class="k">return</span> <span class="n">dataset</span><span class="p">,</span> <span class="n">labels</span>
<span class="n">train_dataset</span><span class="p">,</span> <span class="n">train_labels</span> <span class="o">=</span> <span class="n">reformat</span><span class="p">(</span><span class="n">train_dataset</span><span class="p">,</span> <span class="n">train_labels</span><span class="p">)</span>
<span class="n">valid_dataset</span><span class="p">,</span> <span class="n">valid_labels</span> <span class="o">=</span> <span class="n">reformat</span><span class="p">(</span><span class="n">valid_dataset</span><span class="p">,</span> <span class="n">valid_labels</span><span class="p">)</span>
<span class="n">test_dataset</span><span class="p">,</span> <span class="n">test_labels</span> <span class="o">=</span> <span class="n">reformat</span><span class="p">(</span><span class="n">test_dataset</span><span class="p">,</span> <span class="n">test_labels</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Training set'</span><span class="p">,</span> <span class="n">train_dataset</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">train_labels</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Validation set'</span><span class="p">,</span> <span class="n">valid_dataset</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">valid_labels</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Test set'</span><span class="p">,</span> <span class="n">test_dataset</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">test_labels</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>Training set (784, 200000) (10, 200000)
Validation set (784, 10000) (10, 10000)
Test set (784, 10000) (10, 10000)
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Logistic-regression-with-gradient-descent">Logistic regression with gradient descent<a class="anchor-link" href="#Logistic-regression-with-gradient-descent">¶</a></h2><p>For logistic regression, we use the formula $WX + b = Y'$ to do the computation. W is of shape (10, 784), X is of shape (784, m) and Y' is of shape (10, m) where $m$ is the number of training instances/images. After compute the probabilities of 10 classes stored in Y', we will use built-in <code>tf.nn.softmax_cross_entropy_with_logits</code> to compute cross-entropy between Y' and Y(train_labels) as cost.</p>
<p>We will first instruct Tensorflow how to do all the computation and make it run the optimization several times.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Build-the-Tensorflow-computation-graph">Build the Tensorflow computation graph<a class="anchor-link" href="#Build-the-Tensorflow-computation-graph">¶</a></h3>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>We're first going to train a multinomial logistic regression using simple gradient descent.</p>
<p>TensorFlow works like this:</p>
<ul>
<li><p>First you describe the computation that you want to see performed: what the inputs, the variables, and the operations look like. These get created as nodes over a computation graph. This description is all contained within the block below:</p>
<pre><code>with graph.as_default():
...</code></pre>
</li>
<li><p>Then you can run the operations on this graph as many times as you want by calling <code>session.run()</code>, providing it outputs to fetch from the graph that get returned. This runtime operation is all contained in the block below:</p>
<pre><code>with tf.Session(graph=graph) as session:
...</code></pre>
</li>
</ul>
<p>Let's load all the data into TensorFlow and build the computation graph corresponding to our training:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># With gradient descent training, even this much data is prohibitive.</span>
<span class="c1"># Subset the training data for faster turnaround.</span>
<span class="n">train_subset</span> <span class="o">=</span> <span class="mi">10000</span>
<span class="n">graph</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Graph</span><span class="p">()</span>
<span class="c1"># when we want to create multiple graphs in the same script,</span>
<span class="c1"># use this to encapsulate each graph and run session right after graph definition</span>
<span class="k">with</span> <span class="n">graph</span><span class="o">.</span><span class="n">as_default</span><span class="p">():</span>
<span class="c1"># Input data.</span>
<span class="c1"># Load the training, validation and test data into constants that are</span>
<span class="c1"># attached to the graph.</span>
<span class="n">tf_train_dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="n">train_dataset</span><span class="p">[:,</span> <span class="p">:</span><span class="n">train_subset</span><span class="p">])</span>
<span class="n">tf_train_labels</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="n">train_labels</span><span class="p">[:,</span> <span class="p">:</span><span class="n">train_subset</span><span class="p">])</span>
<span class="n">tf_valid_dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="n">valid_dataset</span><span class="p">)</span>
<span class="n">tf_test_dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="n">test_dataset</span><span class="p">)</span>
<span class="c1"># Variables.</span>
<span class="c1"># These are the parameters that we are going to be training. The weight</span>
<span class="c1"># matrix will be initialized using random values following a (truncated)</span>
<span class="c1"># normal distribution. The biases get initialized to zero.</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">truncated_normal</span><span class="p">([</span><span class="n">num_labels</span><span class="p">,</span> <span class="n">image_size</span> <span class="o">*</span> <span class="n">image_size</span><span class="p">]))</span>
<span class="n">biases</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">zeros</span><span class="p">([</span><span class="n">num_labels</span><span class="p">,</span> <span class="mi">1</span><span class="p">]))</span>
<span class="c1"># Training computation.</span>
<span class="c1"># We multiply the inputs with the weight matrix, and add biases. We compute</span>
<span class="c1"># the softmax and cross-entropy (it's one operation in TensorFlow, because</span>
<span class="c1"># it's very common, and it can be optimized). We take the average of this</span>
<span class="c1"># cross-entropy across all training examples: that's our loss.</span>
<span class="n">logits</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">tf_train_dataset</span><span class="p">)</span> <span class="o">+</span> <span class="n">biases</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax_cross_entropy_with_logits</span><span class="p">(</span>
<span class="n">labels</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">tf_train_labels</span><span class="p">),</span> <span class="n">logits</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">logits</span><span class="p">)))</span>
<span class="c1"># Optimizer.</span>
<span class="c1"># We are going to find the minimum of this loss using gradient descent.</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">GradientDescentOptimizer</span><span class="p">(</span><span class="mf">0.5</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span>
<span class="c1"># Predictions for the training, validation, and test data.</span>
<span class="c1"># These are not part of training, but merely here so that we can report</span>
<span class="c1"># accuracy figures as we train.</span>
<span class="n">train_prediction</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">logits</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">valid_prediction</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">tf_valid_dataset</span><span class="p">)</span> <span class="o">+</span> <span class="n">biases</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">test_prediction</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">tf_test_dataset</span><span class="p">)</span> <span class="o">+</span> <span class="n">biases</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Tips:</p>
<ul>
<li>As we saw before, <code>logits = tf.matmul(weights, tf_train_dataset) + biases</code> is equivalent to the logistic regression formula $Y' = WX + b$</li>
<li>Transpose y_hat and y to fit in <code>softmax_cross_entropy_with_logits</code></li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Gradient-descent-by-iterating-computation-graph">Gradient descent by iterating computation graph<a class="anchor-link" href="#Gradient-descent-by-iterating-computation-graph">¶</a></h3>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Now we can tell TensorFlow to run this computation and iterate.<br/>
Here we will use <code>tqdm</code> library to help us easily visualize the progress and the time used in the iterations.</p>
<p>Tips:</p>
<ul>
<li>Use <code>np.argmax(predictions, axis=0)</code> to transfrom one-hot encoded labels back to singe number for every data points.</li>
<li>Use <code>.eval()</code> to get the predictions for test/validation set</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">tqdm</span> <span class="kn">import</span> <span class="n">tnrange</span>
<span class="n">num_steps</span> <span class="o">=</span> <span class="mi">801</span>
<span class="k">def</span> <span class="nf">accuracy</span><span class="p">(</span><span class="n">predictions</span><span class="p">,</span> <span class="n">labels</span><span class="p">):</span>
<span class="w"> </span><span class="sd">"""For every (logit/Z, y) pair, get the (predicted label, label) and count the </span>
<span class="sd"> occurence where predicted label == label and divide by the total number of </span>
<span class="sd"> data points.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">predictions</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">labels</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">))</span>
<span class="o">/</span> <span class="n">labels</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="mi">100</span><span class="p">)</span>
<span class="c1"># Calculate the correct predictions</span>
<span class="c1"># correct_prediction = tf.equal(tf.argmax(predictions), tf.argmax(labels))</span>
<span class="c1"># # Calculate accuracy on the test set</span>
<span class="c1"># accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))</span>
<span class="k">return</span> <span class="n">accruacy</span>
<span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">(</span><span class="n">graph</span><span class="o">=</span><span class="n">graph</span><span class="p">)</span> <span class="k">as</span> <span class="n">session</span><span class="p">:</span>
<span class="c1"># This is a one-time operation which ensures the parameters get initialized as</span>
<span class="c1"># we described in the graph: random weights for the matrix, zeros for the</span>
<span class="c1"># biases.</span>
<span class="n">tf</span><span class="o">.</span><span class="n">global_variables_initializer</span><span class="p">()</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Initialized'</span><span class="p">)</span>
<span class="k">for</span> <span class="n">step</span> <span class="ow">in</span> <span class="n">tnrange</span><span class="p">(</span><span class="n">num_steps</span><span class="p">):</span>
<span class="c1"># Run the computations. We tell .run() that we want to run the optimizer,</span>
<span class="c1"># and get the loss value and the training predictions returned as numpy</span>
<span class="c1"># arrays.</span>
<span class="n">_</span><span class="p">,</span> <span class="n">l</span><span class="p">,</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">session</span><span class="o">.</span><span class="n">run</span><span class="p">([</span><span class="n">optimizer</span><span class="p">,</span> <span class="n">loss</span><span class="p">,</span> <span class="n">train_prediction</span><span class="p">])</span>
<span class="k">if</span> <span class="p">(</span><span class="n">step</span> <span class="o">%</span> <span class="mi">100</span> <span class="o">==</span> <span class="mi">0</span><span class="p">):</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Cost at step </span><span class="si">{}</span><span class="s1">: </span><span class="si">{:.3f}</span><span class="s1">. Training acc: </span><span class="si">{:.1f}</span><span class="s1">%, Validation acc: </span><span class="si">{:.1f}</span><span class="s1">%.'</span>\
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">step</span><span class="p">,</span> <span class="n">l</span><span class="p">,</span>
<span class="n">accuracy</span><span class="p">(</span><span class="n">predictions</span><span class="p">,</span> <span class="n">train_labels</span><span class="p">[:,</span> <span class="p">:</span><span class="n">train_subset</span><span class="p">]),</span>
<span class="n">accuracy</span><span class="p">(</span><span class="n">valid_prediction</span><span class="o">.</span><span class="n">eval</span><span class="p">(),</span> <span class="n">valid_labels</span><span class="p">),</span> <span class="s2">">"</span><span class="p">))</span>
<span class="c1"># Calling .eval() on valid_prediction is basically like calling run(), but</span>
<span class="c1"># just to get that one numpy array. Note that it recomputes all its graph</span>
<span class="c1"># dependencies.</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Test acc: </span><span class="si">{:.1f}</span><span class="s1">%'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">accuracy</span><span class="p">(</span><span class="n">test_prediction</span><span class="o">.</span><span class="n">eval</span><span class="p">(),</span> <span class="n">test_labels</span><span class="p">)))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>Initialized
</pre>
</div>
</div>
<div class="output_area">
<div id="3a50d11a-5486-4ff3-a59a-70e3da0c0ee3"></div>
<div class="output_subarea output_widget_view">
<script type="text/javascript">
var element = $('#3a50d11a-5486-4ff3-a59a-70e3da0c0ee3');
</script>
<script type="application/vnd.jupyter.widget-view+json">
{"model_id": "a776469c0f394bab94bc900cf03f469d", "version_major": 2, "version_minor": 0}
</script>
</div>
</div>
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>Cost at step 0: 20.057. Training acc: 6.4%, Validation acc: 10.0%.
Cost at step 100: 2.326. Training acc: 70.9%, Validation acc: 70.7%.
Cost at step 200: 1.868. Training acc: 73.9%, Validation acc: 73.4%.
Cost at step 300: 1.611. Training acc: 75.4%, Validation acc: 74.5%.
Cost at step 400: 1.436. Training acc: 76.4%, Validation acc: 74.8%.
Cost at step 500: 1.306. Training acc: 77.1%, Validation acc: 75.1%.
Cost at step 600: 1.207. Training acc: 77.8%, Validation acc: 75.5%.
Cost at step 700: 1.127. Training acc: 78.5%, Validation acc: 75.6%.
Cost at step 800: 1.062. Training acc: 79.2%, Validation acc: 75.9%.
Test acc: 82.8%
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Logistic-regression-with-SGD_1">Logistic regression with SGD<a class="anchor-link" href="#Logistic-regression-with-SGD">¶</a></h2><p>Or more precisely, mini-batch approach.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>From the result above, we can see it cost about 20 seconds (on my computer) to iterate 10,000 training instances by simple gradient descent. Let's now switch to stochastic gradient descent training instead, which is much faster.</p>
<p>The graph will be similar, except that instead of holding all the training data into a constant node, we create a <code>Placeholder</code> node which will be fed actual data at every call of <code>session.run()</code>.</p>
<p>Tips:</p>
<ul>
<li>The difference between SGD and gradient descent is that the former don't use whole training set to compute gradient descent, instead just use a 'mini-batch' of it and assume the corresponding gradient descent is the way to optimize. So we will keep using <code>GradientDescentOptimizer</code> but with a different <code>loss</code> computed from a smaller sub-training set.</li>
</ul>
<center><img src="images/sgd_vs_gradient_descent.png" style="width:70%"/><caption><center> <u><font color="purple"> Figure 3</font></u><font color="purple">: SGD vs Gradient Descent<br/> <font color="black"> </font></font></center>
</caption></center></div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Build-computation-graph">Build computation graph<a class="anchor-link" href="#Build-computation-graph">¶</a></h3>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="n">batch_size</span> <span class="o">=</span> <span class="mi">128</span>
<span class="n">graph</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Graph</span><span class="p">()</span>
<span class="k">with</span> <span class="n">graph</span><span class="o">.</span><span class="n">as_default</span><span class="p">():</span>
<span class="c1"># Input data. For the training data, we use a placeholder that will be fed</span>
<span class="c1"># at run time with a training minibatch.</span>
<span class="n">tf_train_dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">placeholder</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">image_size</span> <span class="o">*</span> <span class="n">image_size</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">))</span>
<span class="n">tf_train_labels</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">placeholder</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">num_labels</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">))</span>
<span class="n">tf_valid_dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="n">valid_dataset</span><span class="p">)</span>
<span class="n">tf_test_dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="n">test_dataset</span><span class="p">)</span>
<span class="c1"># Variables.</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">truncated_normal</span><span class="p">([</span><span class="n">num_labels</span><span class="p">,</span> <span class="n">image_size</span> <span class="o">*</span> <span class="n">image_size</span><span class="p">]))</span>
<span class="n">biases</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">zeros</span><span class="p">([</span><span class="n">num_labels</span><span class="p">,</span> <span class="mi">1</span><span class="p">]))</span>
<span class="c1"># Training computation.</span>
<span class="n">logits</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">tf_train_dataset</span><span class="p">)</span> <span class="o">+</span> <span class="n">biases</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax_cross_entropy_with_logits</span><span class="p">(</span>
<span class="n">labels</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">tf_train_labels</span><span class="p">),</span> <span class="n">logits</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">logits</span><span class="p">)))</span>
<span class="c1"># Optimizer.</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">GradientDescentOptimizer</span><span class="p">(</span><span class="mf">0.5</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span>
<span class="c1"># Predictions for the training, validation, and test data.</span>
<span class="n">train_prediction</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">logits</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">valid_prediction</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">tf_valid_dataset</span><span class="p">)</span> <span class="o">+</span> <span class="n">biases</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">test_prediction</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">weights</span><span class="p">,</span> <span class="n">tf_test_dataset</span><span class="p">)</span> <span class="o">+</span> <span class="n">biases</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Iterate-using-SGD">Iterate using SGD<a class="anchor-link" href="#Iterate-using-SGD">¶</a></h3>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="n">num_steps</span> <span class="o">=</span> <span class="mi">3001</span>
<span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">(</span><span class="n">graph</span><span class="o">=</span><span class="n">graph</span><span class="p">)</span> <span class="k">as</span> <span class="n">session</span><span class="p">:</span>
<span class="n">tf</span><span class="o">.</span><span class="n">global_variables_initializer</span><span class="p">()</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Initialized"</span><span class="p">)</span>
<span class="k">for</span> <span class="n">step</span> <span class="ow">in</span> <span class="n">tnrange</span><span class="p">(</span><span class="n">num_steps</span><span class="p">):</span>
<span class="c1"># Pick an offset within the training data, which has been randomized.</span>
<span class="c1"># Note: we could use better randomization across epochs.</span>
<span class="n">offset</span> <span class="o">=</span> <span class="p">(</span><span class="n">step</span> <span class="o">*</span> <span class="n">batch_size</span><span class="p">)</span> <span class="o">%</span> <span class="p">(</span><span class="n">train_labels</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="c1"># Generate a minibatch.</span>
<span class="n">batch_data</span> <span class="o">=</span> <span class="n">train_dataset</span><span class="p">[:,</span> <span class="n">offset</span><span class="p">:(</span><span class="n">offset</span> <span class="o">+</span> <span class="n">batch_size</span><span class="p">)]</span>
<span class="n">batch_labels</span> <span class="o">=</span> <span class="n">train_labels</span><span class="p">[:,</span> <span class="n">offset</span><span class="p">:(</span><span class="n">offset</span> <span class="o">+</span> <span class="n">batch_size</span><span class="p">)]</span>
<span class="c1"># Prepare a dictionary telling the session where to feed the minibatch.</span>
<span class="c1"># The key of the dictionary is the placeholder node of the graph to be fed,</span>
<span class="c1"># and the value is the numpy array to feed to it.</span>
<span class="n">feed_dict</span> <span class="o">=</span> <span class="p">{</span>
<span class="n">tf_train_dataset</span><span class="p">:</span> <span class="n">batch_data</span><span class="p">,</span>
<span class="n">tf_train_labels</span><span class="p">:</span> <span class="n">batch_labels</span>
<span class="p">}</span>
<span class="n">_</span><span class="p">,</span> <span class="n">l</span><span class="p">,</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">session</span><span class="o">.</span><span class="n">run</span><span class="p">(</span>
<span class="p">[</span><span class="n">optimizer</span><span class="p">,</span> <span class="n">loss</span><span class="p">,</span> <span class="n">train_prediction</span><span class="p">],</span> <span class="n">feed_dict</span><span class="o">=</span><span class="n">feed_dict</span><span class="p">)</span>
<span class="k">if</span> <span class="p">(</span><span class="n">step</span> <span class="o">%</span> <span class="mi">500</span> <span class="o">==</span> <span class="mi">0</span><span class="p">):</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Minibatch loss at step </span><span class="si">{}</span><span class="s1">: </span><span class="si">{:.3f}</span><span class="s1">. batch acc: </span><span class="si">{:.1f}</span><span class="s1">%, Valid acc: </span><span class="si">{:.1f}</span><span class="s1">%.'</span>\
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">step</span><span class="p">,</span> <span class="n">l</span><span class="p">,</span>
<span class="n">accuracy</span><span class="p">(</span><span class="n">predictions</span><span class="p">,</span> <span class="n">batch_labels</span><span class="p">),</span>
<span class="n">accuracy</span><span class="p">(</span><span class="n">valid_prediction</span><span class="o">.</span><span class="n">eval</span><span class="p">(),</span> <span class="n">valid_labels</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Test acc: </span><span class="si">{:.1f}</span><span class="s1">%'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">accuracy</span><span class="p">(</span><span class="n">test_prediction</span><span class="o">.</span><span class="n">eval</span><span class="p">(),</span> <span class="n">test_labels</span><span class="p">)))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>Initialized
</pre>
</div>
</div>
<div class="output_area">
<div id="19948813-b5f9-430f-8a79-0254c8dc76fb"></div>
<div class="output_subarea output_widget_view">
<script type="text/javascript">
var element = $('#19948813-b5f9-430f-8a79-0254c8dc76fb');
</script>
<script type="application/vnd.jupyter.widget-view+json">
{"model_id": "2d2a36e34f9843b5a38a9fe105281093", "version_major": 2, "version_minor": 0}
</script>
</div>
</div>
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>Minibatch loss at step 0: 20.939. batch acc: 6.2%, Valid acc: 9.7%.
Minibatch loss at step 500: 2.546. batch acc: 70.3%, Valid acc: 75.1%.
Minibatch loss at step 1000: 1.520. batch acc: 74.2%, Valid acc: 76.3%.
Minibatch loss at step 1500: 1.441. batch acc: 76.6%, Valid acc: 77.8%.
Minibatch loss at step 2000: 1.135. batch acc: 79.7%, Valid acc: 77.1%.
Minibatch loss at step 2500: 1.225. batch acc: 72.7%, Valid acc: 78.8%.
Minibatch loss at step 3000: 0.932. batch acc: 76.6%, Valid acc: 79.4%.
Test acc: 86.9%
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>It took only about 3 seconds in my computer to finish the optimization using SGD (which took gradient descent about 20 seconds) and got a even slightly better result. The key of SGD is take <strong>randomized</strong> samples / mini-batches and feed that into the model every iteration (thus the <code>feed_dict</code> term).</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="2-layer-NN-with-ReLU-units_1">2-layer NN with ReLU units<a class="anchor-link" href="#2-layer-NN-with-ReLU-units">¶</a></h2>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Instead all just linear combination of features, we want to introduce non-linearlity in our logistic regression. By turning the logistic regression example with SGD into a 1-hidden layer neural network with rectified linear units <a href="https://www.tensorflow.org/versions/r0.7/api_docs/python/nn.html#relu">nn.relu()</a> and 1024 hidden nodes, we should be able to improve validation / test accuracy.</p>
<p>A 2-layer NN (1-hidden layer NN) look like this:</p>
<center><img src="images/2layer_nn.png" style="width:30%"/><caption><center> <u><font color="purple"> Figure 4</font></u><font color="purple">: 1 hidden-layer NN <br/> <font color="black"> </font></font></center><p>A ReLU activation unit look like this:</p>
<center><img src="images/relu.png" style="width:30%"/><caption><center> <u><font color="purple"> Figure 5</font></u><font color="purple">: ReLU <br/> <font color="black"> </font></font></center>
</caption></center></caption></center></div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Build-compuation-graph">Build compuation graph<a class="anchor-link" href="#Build-compuation-graph">¶</a></h3><p>In this part, use the notation $X$ in replace of <code>dataset</code>. The weights and biases of the hidden layer are denoted as $W1$ and $b1$, and the weights and biases of the output layer are denoted as $W2$ and $b2$.</p>
<p>Thus the pre-activation output(logits) of output layer is computed as $ logits = W2 * ReLU(W1 * X + b1) + b2 $</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="n">batch_size</span> <span class="o">=</span> <span class="mi">128</span>
<span class="n">num_hidden_unit</span> <span class="o">=</span> <span class="mi">1024</span>
<span class="n">graph</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Graph</span><span class="p">()</span>
<span class="k">with</span> <span class="n">graph</span><span class="o">.</span><span class="n">as_default</span><span class="p">():</span>
<span class="c1"># placeholder for mini-batch when training </span>
<span class="n">tf_train_dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">placeholder</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">image_size</span> <span class="o">*</span> <span class="n">image_size</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">))</span>
<span class="n">tf_train_labels</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">placeholder</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">num_labels</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">))</span>
<span class="c1"># use all valid/test set</span>
<span class="n">tf_valid_dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="n">valid_dataset</span><span class="p">)</span>
<span class="n">tf_test_dataset</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">(</span><span class="n">test_dataset</span><span class="p">)</span>
<span class="c1"># initialize weights, biases</span>
<span class="c1"># notice that we have a new hidden layer so we now have W1, b1, W2, b2</span>
<span class="n">W1</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">truncated_normal</span><span class="p">([</span><span class="n">num_hidden_unit</span><span class="p">,</span> <span class="n">image_size</span> <span class="o">*</span> <span class="n">image_size</span><span class="p">]))</span>
<span class="n">b1</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">zeros</span><span class="p">([</span><span class="n">num_hidden_unit</span><span class="p">,</span> <span class="mi">1</span><span class="p">]))</span>
<span class="n">W2</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">truncated_normal</span><span class="p">([</span><span class="n">num_labels</span><span class="p">,</span> <span class="n">num_hidden_unit</span><span class="p">]))</span>
<span class="n">b2</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">Variable</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">zeros</span><span class="p">([</span><span class="n">num_labels</span><span class="p">,</span> <span class="mi">1</span><span class="p">]))</span>
<span class="c1"># training computation</span>
<span class="n">logits</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">W2</span><span class="p">,</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">W1</span><span class="p">,</span> <span class="n">tf_train_dataset</span><span class="p">)</span> <span class="o">+</span> <span class="n">b1</span><span class="p">))</span> <span class="o">+</span> <span class="n">b2</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">reduce_mean</span><span class="p">(</span>
<span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax_cross_entropy_with_logits</span><span class="p">(</span>
<span class="n">labels</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">tf_train_labels</span><span class="p">),</span> <span class="n">logits</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">logits</span><span class="p">)))</span>
<span class="c1"># optimizer</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">train</span><span class="o">.</span><span class="n">GradientDescentOptimizer</span><span class="p">(</span><span class="mf">0.5</span><span class="p">)</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span>
<span class="c1"># valid / test prediction - y_hat</span>
<span class="n">train_prediction</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">logits</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">valid_prediction</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">W2</span><span class="p">,</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">W1</span><span class="p">,</span> <span class="n">tf_valid_dataset</span><span class="p">)</span> <span class="o">+</span> <span class="n">b1</span><span class="p">))</span> <span class="o">+</span> <span class="n">b2</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">test_prediction</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">W2</span><span class="p">,</span> <span class="n">tf</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">tf</span><span class="o">.</span><span class="n">matmul</span><span class="p">(</span><span class="n">W1</span><span class="p">,</span> <span class="n">tf_test_dataset</span><span class="p">)</span> <span class="o">+</span> <span class="n">b1</span><span class="p">))</span> <span class="o">+</span> <span class="n">b2</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Run-the-iterations">Run the iterations<a class="anchor-link" href="#Run-the-iterations">¶</a></h3>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span><span class="n">num_steps</span> <span class="o">=</span> <span class="mi">3001</span>
<span class="k">with</span> <span class="n">tf</span><span class="o">.</span><span class="n">Session</span><span class="p">(</span><span class="n">graph</span><span class="o">=</span><span class="n">graph</span><span class="p">)</span> <span class="k">as</span> <span class="n">session</span><span class="p">:</span>
<span class="c1"># initialized parameters</span>
<span class="n">tf</span><span class="o">.</span><span class="n">global_variables_initializer</span><span class="p">()</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">"Initialized"</span><span class="p">)</span>
<span class="c1"># take steps to optimize</span>
<span class="k">for</span> <span class="n">step</span> <span class="ow">in</span> <span class="n">tnrange</span><span class="p">(</span><span class="n">num_steps</span><span class="p">):</span>
<span class="c1"># generate randomized mini-batches</span>
<span class="n">offset</span> <span class="o">=</span> <span class="p">(</span><span class="n">step</span> <span class="o">*</span> <span class="n">batch_size</span><span class="p">)</span> <span class="o">%</span> <span class="p">(</span><span class="n">train_labels</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="n">batch_data</span> <span class="o">=</span> <span class="n">train_dataset</span><span class="p">[:,</span> <span class="n">offset</span><span class="p">:(</span><span class="n">offset</span> <span class="o">+</span> <span class="n">batch_size</span><span class="p">)]</span>
<span class="n">batch_labels</span> <span class="o">=</span> <span class="n">train_labels</span><span class="p">[:,</span> <span class="n">offset</span><span class="p">:(</span><span class="n">offset</span> <span class="o">+</span> <span class="n">batch_size</span><span class="p">)]</span>
<span class="n">feed_dict</span> <span class="o">=</span> <span class="p">{</span>
<span class="n">tf_train_dataset</span><span class="p">:</span> <span class="n">batch_data</span><span class="p">,</span>
<span class="n">tf_train_labels</span><span class="p">:</span> <span class="n">batch_labels</span>
<span class="p">}</span>
<span class="n">_</span><span class="p">,</span> <span class="n">l</span><span class="p">,</span> <span class="n">predictions</span> <span class="o">=</span> <span class="n">session</span><span class="o">.</span><span class="n">run</span><span class="p">(</span>
<span class="p">[</span><span class="n">optimizer</span><span class="p">,</span> <span class="n">loss</span><span class="p">,</span> <span class="n">train_prediction</span><span class="p">],</span> <span class="n">feed_dict</span><span class="o">=</span><span class="n">feed_dict</span><span class="p">)</span>
<span class="k">if</span> <span class="p">(</span><span class="n">step</span> <span class="o">%</span> <span class="mi">500</span> <span class="o">==</span> <span class="mi">0</span><span class="p">):</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Minibatch loss at step </span><span class="si">{}</span><span class="s1">: </span><span class="si">{:.3f}</span><span class="s1">. batch acc: </span><span class="si">{:.1f}</span><span class="s1">%, Valid acc: </span><span class="si">{:.1f}</span><span class="s1">%.'</span>\
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">step</span><span class="p">,</span> <span class="n">l</span><span class="p">,</span>
<span class="n">accuracy</span><span class="p">(</span><span class="n">predictions</span><span class="p">,</span> <span class="n">batch_labels</span><span class="p">),</span>
<span class="n">accuracy</span><span class="p">(</span><span class="n">valid_prediction</span><span class="o">.</span><span class="n">eval</span><span class="p">(),</span> <span class="n">valid_labels</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">'Test acc: </span><span class="si">{:.1f}</span><span class="s1">%'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">accuracy</span><span class="p">(</span><span class="n">test_prediction</span><span class="o">.</span><span class="n">eval</span><span class="p">(),</span> <span class="n">test_labels</span><span class="p">)))</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>Initialized
</pre>
</div>
</div>
<div class="output_area">
<div id="3516b44a-ea44-4198-8f11-fef31cd6f6cf"></div>
<div class="output_subarea output_widget_view">
<script type="text/javascript">
var element = $('#3516b44a-ea44-4198-8f11-fef31cd6f6cf');
</script>
<script type="application/vnd.jupyter.widget-view+json">
{"model_id": "f379ee5b4ed04eb18e5ee8d6b1e69a17", "version_major": 2, "version_minor": 0}
</script>
</div>
</div>
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>Minibatch loss at step 0: 409.203. batch acc: 4.7%, Valid acc: 30.5%.
Minibatch loss at step 500: 12.319. batch acc: 75.8%, Valid acc: 80.7%.
Minibatch loss at step 1000: 12.638. batch acc: 74.2%, Valid acc: 80.8%.
Minibatch loss at step 1500: 7.635. batch acc: 77.3%, Valid acc: 81.2%.
Minibatch loss at step 2000: 7.322. batch acc: 80.5%, Valid acc: 81.4%.
Minibatch loss at step 2500: 10.451. batch acc: 76.6%, Valid acc: 80.1%.
Minibatch loss at step 3000: 3.914. batch acc: 83.6%, Valid acc: 82.7%.
Test acc: 88.7%
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Summary_1">Summary<a class="anchor-link" href="#Summary">¶</a></h2><p>Because we use a more complex model(1 hidden-layer NN), it take a little longer to train, but we're able to gain more performance from logistic regression even with the same hyper-parameter settings (learning rate = 0.5, batch_size=128). Better performance may be gained by tuning hyper parameters of the 2 layer NN. Also notice that by using mini-batch / SGD, we can save lots of time training models and even get a better result.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3"><pre><span></span>
</pre></div>
</div>
</div>
</div>
</div>
<script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
var mathjaxscript = document.createElement('script');
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
mathjaxscript.type = 'text/javascript';
mathjaxscript.src = '//cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
"MathJax.Hub.Config({" +
" config: ['MMLorHTML.js']," +
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
" displayAlign: 'center'," +
" displayIndent: '0em'," +
" showMathMenu: true," +
" tex2jax: { " +
" inlineMath: [ ['$','$'] ], " +
" displayMath: [ ['$$','$$'] ]," +
" processEscapes: true," +
" preview: 'TeX'," +
" }, " +
" 'HTML-CSS': { " +
" linebreaks: { automatic: true, width: '95% container' }, " +
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'black ! important'} }" +
" } " +
"}); ";
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
}
</script>
<!-- Tags -->
<p class="blog-content__tags">
<span>Post Tags</span>
<span class="blog-content__tag-list">
<a href="https://leemeng.tw/tag/python.html" rel="tag">Python</a>
<a href="https://leemeng.tw/tag/tensorflow.html" rel="tag">TensorFlow</a>
<a href="https://leemeng.tw/tag/deep-learning.html" rel="tag">Deep Learning</a>
<a href="https://leemeng.tw/tag/neural-networks.html" rel="tag">Neural Networks</a>
<a href="https://leemeng.tw/tag/optimization.html" rel="tag">Optimization</a>
<a href="https://leemeng.tw/tag/notmnist.html" rel="tag">NotMNIST</a>
<a href="https://leemeng.tw/tag/machine-learning.html" rel="tag">Machine Learning</a>
<a href="https://leemeng.tw/tag/image-recognition.html" rel="tag">Image Recognition</a>
<a href="https://leemeng.tw/tag/sgd.html" rel="tag">SGD</a>
<a href="https://leemeng.tw/tag/gradient-descent.html" rel="tag">Gradient Descent</a>
<a href="https://leemeng.tw/tag/deep-learning-by-google.html" rel="tag">Deep Learning by Google</a>
<a href="https://leemeng.tw/tag/machine-learning-engineer-by-kaggle.html" rel="tag">Machine Learning Engineer by kaggle</a>
<a href="https://leemeng.tw/tag/udacity.html" rel="tag">Udacity</a>
</span>
</p>