-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
70 lines (58 loc) · 3.41 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import logging.config
import pandas as pd
from traceback import format_exc
import geopy.distance
from raif_hack.features import prepare_categorical, get_number_floors, normalize_floor, is_specific_floor, get_distance_to_reg_center
from raif_hack.model import BenchmarkModel
from raif_hack.settings import LOGGING_CONFIG, NUM_FEATURES, CATEGORICAL_OHE_FEATURES, \
CATEGORICAL_STE_FEATURES, CENTER_MSK_LAT, CENTER_MSK_LNG
logging.config.dictConfig(LOGGING_CONFIG)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(
description="""
Бенчмарк для хакатона по предсказанию стоимости коммерческой недвижимости от "Райффайзенбанк"
Скрипт для предсказания модели
Примеры:
1) с poetry - poetry run python3 predict.py --test_data /path/to/test/data --model_path /path/to/model --output /path/to/output/file.csv.gzip
2) без poetry - python3 predict.py --test_data /path/to/test/data --model_path /path/to/model --output /path/to/output/file.csv.gzip
""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument("--test_data", "-d", type=str, dest="d", required=True, help="Путь до отложенной выборки")
parser.add_argument("--model_path", "-mp", type=str, dest="mp", required=True,
help="Пусть до сериализованной ML модели")
parser.add_argument("--output", "-o", type=str, dest="o", required=True, help="Путь до выходного файла")
return parser.parse_args()
if __name__ == "__main__":
try:
logger.info('START predict.py')
args = vars(parse_args())
logger.info('Load test df')
test_df = pd.read_csv(args['d'])
logger.info(f'Input shape: {test_df.shape}')
test_df = test_df.sort_values('date', ascending=True)
test_df = prepare_categorical(test_df)
# Add new features
test_df['n_floors'] = test_df['floor'].apply(lambda x: get_number_floors(x))
test_df['norm_floor'] = test_df['floor'].apply(lambda x: normalize_floor(x))
test_df['specific_floor'] = test_df['norm_floor'].apply(lambda x: is_specific_floor(x))
test_df['low_floor'] = test_df['norm_floor'].apply(lambda x: 1 if x.startswith('-') else 0)
test_df['basement'] = test_df['norm_floor'].apply(lambda x: 1 if 'подвал' in x else 0)
test_df['basement1'] = test_df['norm_floor'].apply(lambda x: 1 if 'цоколь' in x else 0)
test_df['distance_from_moscow_center'] = test_df.apply(
lambda x: geopy.distance.distance((x['lat'], x['lng']), (CENTER_MSK_LAT, CENTER_MSK_LNG)).km, axis=1)
#test_df['distance_from_reg_center'] = test_df.apply(lambda x: get_distance_to_reg_center(x), axis=1)
logger.info('Load model')
model = BenchmarkModel.load(args['mp'])
logger.info('Predict')
test_df['per_square_meter_price'] = model.predict(test_df[NUM_FEATURES+CATEGORICAL_OHE_FEATURES+CATEGORICAL_STE_FEATURES]) * 0.95
test_df = test_df.sort_index()
logger.info('Save results')
test_df[['id','per_square_meter_price']].to_csv(args['o'], index=False)
except Exception as e:
err = format_exc()
logger.error(err)
raise (e)
logger.info('END predict.py')