-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBC2_2023.Rmd
188 lines (138 loc) · 6.4 KB
/
BC2_2023.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---
main_topsize: 0.12 #percent coverage of the poster
main_bottomsize: 0.095
#ESSENTIALS
title: ''
author:
- name: '**Léonard Hérault**'
affil: 1,2
main: true
orcid: "0000-0001-6499-2991"
email: [email protected]
- name: Aurélie Gabriel
affil: 1,2
- name: Mariia Bilous
affil: 1,2
- name: David Gfeller
affil: 1,2
affiliation:
- num: 1
address: Department of Oncology, Ludwig Institute for Cancer research, University of Lausanne
- num: 2
address: Swiss Institute of Bioinformatics
main_findings:
- "**Metacells** facilitate the analysis of single-cell **multiomics** data"
logoleft_name: "images/Poster/logoLeftFF.jpg"
logoright_name: "images/Poster/logoRightFF.jpg"
logocenter_name: "images/Poster/qr-code.svg"
output:
posterdown::posterdown_betterport:
self_contained: false
pandoc_args: --mathjax
number_sections: false
bibliography: biblio.bib
reference_textsize: "15px"
link-citations: true
poster_width: "33.1in"
poster_height: "46.8in"
---
```{=html}
<style>
#main-img-left {
width: 13%;
}
#main-img-center {
width: 10%;
}
#main-img-right {
width: 13%;
}
</style>
```
```{r, include=FALSE}
knitr::opts_chunk$set(echo = FALSE,
warning = FALSE,
tidy = FALSE,
message = FALSE,
fig.align = 'center',
out.width = "100%")
options(knitr.table.format = "html")
library(ggplot2)
```
# Introduction
- Single-cell multiomics: measurement of different modalities (e.g., ATAC, RNA, proteins) in the same cell (Fig.\@ref(fig:benchmark)A)
- Precise analysis of cell-type specific transcriptional regulation (Fig.\@ref(fig:benchmark)B).
```{r, include=FALSE}
knitr::write_bib(c('posterdown', 'rmarkdown','pagedown'), 'packages.bib')
```
```{r}
library(ggplot2)
```
```{r intro, fig.cap= 'Single-cell multiomics (A) can be used to study cell-type specific transcriptional regulation (B)'}
knitr::include_graphics('images/intro.jpg')
```
- **Limitations:** Large size, high sparsity of the data.
- **Solution:** Merging highly similar cells in metacells, proposed for scRNA-seq [@baran_metacell_2019].
- **Aim:** Extension of `SuperCell` [@bilous_metacells_2022-1], to single-cell multiomics. (Fig.\@ref(fig:workflow)B).
```{r workflow, fig.cap= 'SuperCell workflow to identify multiomics metacells at a graining level γ. The multimodal knn graph is computed using the WNN method from Seurat [@hao_integrated_2021].'}
knitr::include_graphics('images/workflow.jpg')
```
# Benchmark
Multiomodal version of `SuperCell` versus unimodal tools (Fig.\@ref(fig:benchmark)):
- Purer metacells
- Compact and separated metacells in both modalities
- Faster
```{r benchmark, fig.cap= '**A** Benchmark metrics. **B** Benchmark results of metacell tools on a 10x multiome (RNA + ATAC) dataset of PBMC, graining level γ=75. Tools: new version of SuperCell, SEACells [@persad_seacells_2022], MetaCell2 [@ben-kiki_divide_2021].' }
metrics.fig <- cowplot::ggdraw() + cowplot::draw_image(image = "images/metrics_vertical_cropped.jpg", scale = 1)
bench_plot <- readRDS("bench_plot.rds")
cowplot::plot_grid(metrics.fig,bench_plot,labels = c('A','B'),ncol = 2,rel_widths = c(0.2,0.5))
```
# SuperCell Analyses
### 10X multiome dataset of PBMCs
`SuperCell` identifies robust metacells in the PBMC multiomic space (Fig.\@ref(fig:pbmcmulti)).
```{r pbmcmulti, echo=FALSE, fig.cap='Identified metacells in the multiomic space of PBMCs, graining level γ = 75', fig.height=7}
umapMultiSC <- readRDS("multiome_umapmc.rds")
umapMultiSC
```
Gene accessibility and expression appear more correlated at the metacell level (Fig.\@ref(fig:crMultiome)).
```{r crMultiome, echo=FALSE, fig.cap='**A**. Gene accessibility - gene expression correlation for TCF7 and SPI1. Left: Single-cell level, right: metacell γ = 75. Same color legend as in Fig.\\@ref(fig:pbmcmulti). **B**. Same correlations for the 2000 highly variable genes (on RNA) with increasing γ.', fig.height=5}
cr.rna.atac.plot <- readRDS("cr.rna.atac.plot.rds")
cr.rna.atac.plot
```
Correlation between transcription factor (TF) expression and corresponding motif accessibility also becomes clearer using metacells (Fig.\@ref(fig:crMotifRna)).
```{r, crMotifRna, fig.cap= '**A.** TF expression (RNA) - motif accessibility (ATAC) correlation for TCF7 and SPI1. Left: single-cell, right: metacells, γ = 75. Same color legend as in Fig.\\@ref(fig:pbmcmulti). **B.** Same correlations for 200 TFs (with cor > 0.01 in single-cells) with increasing γ.', fig.height=5}
cr.rna.motif.plot <- readRDS("cr.rna.motif.plot.rds")
cr.rna.motif.plot
```
\
### CITE-seq atlas of 160,000 PBMCs
- Identification of metacells by sample (γ = 20)
- Correction of the batch effect at the metacell level (Fig.\@ref(fig:citeAtlas)A&B).
- This workflow runs on a standard laptop (Fig.\@ref(fig:citeAtlas)C).
```{r citeAtlas, echo=FALSE, fig.cap='**A.** UMAP visualizations of 8,000 multiomic metacells, metacell purities with respect to original annotation from [@hao_integrated_2021]. **B.** Metacell workflow. **C.** Computational resources used by single-cell and metacell workflows.', fig.height=6}
cite.atlas.umaps.purity.plot <- readRDS("cite.atlas.umaps.purity.plot.rds")
cite.atlas.umaps.purity.plot <- cowplot::plot_grid(cite.atlas.umaps.purity.plot,labels = "A")
ressources.plot <- readRDS("ressources.plot.rds")
cite.atlas.workflow <- cowplot::ggdraw() + cowplot::draw_image(image = "images/citeAtlasWorkflow.jpg", scale = 0.9)
citeAtlasBC <- cowplot::plot_grid(
cite.atlas.workflow,
ressources.plot,
labels = c("B","C"),rel_widths = c(0.6,0.4)
)
cowplot::plot_grid(cite.atlas.umaps.purity.plot,citeAtlasBC,ncol = 1,rel_heights = c(0.55,0.45))
```
RNA-protein correlation in the CITE-seq atlas is increased with metacells (Fig.\@ref(fig:globalCrCiteSeq)).
```{r, globalCrCiteSeq, fig.cap='**A.** RNA-protein correlation for CD55 and CD19. Left: Single-cell level, right: metacell γ = 75 Same color legend as in Fig.\\@ref(fig:citeAtlas). **B.** RNA-Protein correlation for 213 gene-protein pairs with increasing γ'}
cr.rna.prot.plot <- readRDS("cr.rna.prot.plot.rds")
cr.rna.prot.plot
```
# Conclusion
```{r conclusion,fig.height=1}
knitr::include_graphics('images/conclusion.jpg')
```
## Perspectives
- **Downstream analyses** of sc-multiomics:
- gene regulatory network inference
- multiomic velocity
- **Metaspots** for spatial-omics
### References