-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSuperCellMultiomics_SCCL_2022.Rmd
164 lines (123 loc) · 5.35 KB
/
SuperCellMultiomics_SCCL_2022.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
main_topsize: 0.12 #percent coverage of the poster
main_bottomsize: 0.095
#ESSENTIALS
title: ''
author:
- name: '**Léonard Hérault**'
affil: 1,2
main: true
orcid: "0000-0001-6499-2991"
email: [email protected]
- name: Aurélie Gabriel
affil: 1,2
- name: Mariia Bilous
affil: 1,2
- name: David Gfeller
affil: 1,2
affiliation:
- num: 1
address: Department of Oncology, Ludwig Institute for Cancer research, University of Lausanne
- num: 2
address: Swiss Institute of Bioinformatics
main_findings:
- "Reconciling **single-cell multiomics** modalities using **metacells**"
logoleft_name: "images/Poster/logoLeftFF.jpg"
logoright_name: "images/Poster/logoRightFF.jpg"
logocenter_name: "images/Poster/qr-code.svg"
output:
posterdown::posterdown_betterport:
self_contained: false
pandoc_args: --mathjax
number_sections: false
bibliography: biblio.bib
link-citations: true
poster_width: "33.1in"
poster_height: "46.8in"
---
<style>
#main-img-left {
width: 13%;
}
#main-img-center {
width: 10%;
}
#main-img-right {
width: 13%;
}
</style>
```{r, include=FALSE}
knitr::opts_chunk$set(echo = FALSE,
warning = FALSE,
tidy = FALSE,
message = FALSE,
fig.align = 'center',
out.width = "100%")
options(knitr.table.format = "html")
library(ggplot2)
```
# Introduction
The increased throughput of single-cell omics technologies allows researchers to study cell-type specific gene regulation at unprecedented resolution. This promise depends on the development of computational methods to cope with both the large size and the high sparsity of these data. Thus, we and others have developed approaches to identify metacells, disjoint and homogeneous groups of cells, in scRNA-seq data [@baran_metacell_2019;@bilous_metacells_2022-1]. We are now extending our `SuperCell` method to identify metacells in single-cell multiomics (sc-multiomics) data that combines the measurement of different types of molecules (modalities) in the same single cell.
```{r, include=FALSE}
knitr::write_bib(c('posterdown', 'rmarkdown','pagedown'), 'packages.bib')
```
```{r FigureIntro, out.width="80%"}
knitr::include_graphics('images/FigureIntro.png.jpg')
```
```{r fig.cap='Metacell concept (A) and examples sc-multiomics data (B)'}
library(ggplot2)
```
# Methods
For sc-multiomics, our new `SuperCell` workflow identifies metacells on a weighted Nearest Neighbor (wNN) graph [@hao_integrated_2021]. Single-cell raw data from each modality are aggregated per metacells that can be used for downstream analyses.
```{r FigureMethod}
knitr::include_graphics('images/FigureMethod.jpg')
```
## Datasets
* *10X multiome* data of peripheral blood mononuclear cells (PBMCs): scRNA-seq & ATAC-seq (10'000 cells). We analyzed the correlation between gene expression and activity.
* CITE-seq data from bone marrow (BM) cells: scRNA-seq & 25 protein levels (30'000 cells). We analyzed the correlation between gene expression and the corresponding protein level.
```{r FigureActivity, out.width="70%"}
knitr::include_graphics('images/FigureActivity.jpg')
```
# Results
### 10X multiome dataset of PBMCs
`SuperCell` identified robust metacells in the multiomic space of PBMCs. (Fig.\@ref(fig:pbmcmulti)).
```{r pbmcmulti, echo=FALSE, fig.cap='identified metacells in the multimomic space of PBMCs.', fig.height=6, out.width="80%"}
umapMultiSC <- readRDS("multiome_umapmc.rds")
umapMultiSC
```
\
Gene activity and expression for key Transcription Factors TFs of lymphoid cells (TCF7) and myeloid cells (SPI1) appeared more correlated at the metacell level (Fig.\@ref(fig:crMultiomeKey)).
```{r crMultiomeKey, echo=FALSE, fig.cap='gene expression-activity correlation for key TFs of immune cells. Single-cell level, gamma 20 and gamma 50 from left to right.'}
multiomeCr <- readRDS("crPLotMultiome.rds")
cowplot::plot_grid(multiomeCr)
```
\
Analysis of this correlation for the most variable genes at the transcriptomic level (top 2000) showed the same trend (Fig.\@ref(fig:globalCrMultiome)).
```{r, globalCrMultiome, fig.cap='Gene expression-activity correlation for 2000 genes at different gammas. The dataset was subsampled at each gamma for comparison.'}
globalCr <- readRDS("globalCrPLotMultiome.rds")
globalCr
```
\
\
\
\
\
### CITE-seq dataset of BM cells
`SuperCell` identified robust metacell in the CITE-seq space of BM cells (Fig.\@ref(fig:bmcite)).
```{r bmcite, echo=FALSE, fig.cap='Identified metacell in the CITE-seq space of BM cells', fig.height=6, out.width="80%"}
umapMultiSC <- readRDS("bmcite_umapmc.rds")
umapMultiSC + guides(fill=guide_legend(ncol=2))
```
\
Metacell analysis increased the correlation between RNA and protein levels of key markers of HSCs (CD34) and CD8 T cells (CD8A, Fig.\@ref(fig:crBmKey)).
```{r crBmKey, echo=FALSE, fig.cap='RNA protein correlations for key markers of BM cells. Single-cell level, gamma 20 and gamma 50 from left to right.'}
crBmKey <- readRDS("crCiteSeq.rds")
cowplot::plot_grid(crBmKey)
```
\
RNA-protein correlation analysis for the 25 gene-protein pairs exhibited the same trend (Fig.\@ref(fig:globalCrCiteSeq)).
```{r, globalCrCiteSeq, fig.cap='RNA-Protein correlation for all gene-protein pairs. Random metacells were defined at each gamma for comparison.'}
globalCr <- readRDS("globalCrCiteSeq.rds")
globalCr
```
# References