-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans_laplacian_energies.py
320 lines (257 loc) · 11.4 KB
/
kmeans_laplacian_energies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# grab data
import csv
from DataSet import DataSet #custom class
from OptimalClusterFinder import OptimalClusterFinder #custom class
import numpy as np #scikit-learn requires this
import itertools
#kmeans
from sklearn.cluster import KMeans #sci-kit learn
import matplotlib.pyplot as plt # plotting
from mpl_toolkits.mplot3d import Axes3D #3D MatPlotLib - if you have matplotlib, you have this
from sklearn.metrics import silhouette_samples
#benchmark tutorial
from time import time
from sklearn import metrics
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
#save
import os
def load_csv(file_name:str, directory:str="Data/")->list:
"""Load CSV from Data directory.
:param file_name: Filename
:param directory: Directory where file is stored.
:returns: CSV data as a list contain a list for rows. Each row represents a group."""
file_path="Data/"
file_path+=file_name
with open(file_path, 'r') as file:
csv_reader = csv.reader(file)
data = []
for row in csv_reader:
data.append(row)
return data
def clean_compeletion_csv(data:list)->tuple:
"""Cleans up time/accuracy CSV for convient use.
:param data: List of list from load_csv(file_name) where each row is a group.
:returns: List of tuples (time (in secs):float, accuracy as percentage:float) with each row represents a group."""
clean_data=[]
data=data[1:]
for row in data:
junk, junk2, time = row[1].split()
hours, minutes, seconds = map(float, time.split(':'))
in_seconds = minutes * 60 + seconds
clean_data.append((in_seconds,float(row[2])))
return clean_data
#k-means documention: https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.KMeans.html
#k-mean tutorial: https://scikit-learn.org/1.5/auto_examples/cluster/plot_kmeans_digits.html#sphx-glr-auto-examples-cluster-plot-kmeans-digits-py
def bench_k_means(kmeans, name, data, labels):
"""Benchmark to evaluate the KMeans initialization methods.
Parameters
----------
kmeans : KMeans instance
A :class:`~sklearn.cluster.KMeans` instance with the initialization
already set.
name : str
Name given to the strategy. It will be used to show the results in a
table.
data : ndarray of shape (n_samples, n_features)
The data to cluster.
labels : ndarray of shape (n_samples,)
The labels used to compute the clustering metrics which requires some
supervision.
"""
t0 = time()
estimator = make_pipeline(StandardScaler(), kmeans).fit(data)
fit_time = time() - t0
results = [name, fit_time, estimator[-1].inertia_]
# Define the metrics which require only the true labels and estimator
# labels
clustering_metrics = [
metrics.homogeneity_score,
metrics.completeness_score,
metrics.v_measure_score,
metrics.adjusted_rand_score,
metrics.adjusted_mutual_info_score,
]
results += [m(labels, estimator[-1].labels_) for m in clustering_metrics]
# The silhouette score requires the full dataset
results += [
metrics.silhouette_score(
data,
estimator[-1].labels_,
metric="euclidean",
sample_size=300,
)
]
# Show the results
formatter_result = (
"{:9s}\t{:.3f}s\t{:.0f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}"
)
print(formatter_result.format(*results))
def benchmarks(kmeans:str, num_clusters:int, data:np.ndarray, labels):
"""Benchmarks from an example kmean tutorial from scikit learn"""
print(80 * "_")
print("init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette")
print(80 * "_")
#evaluates our kmeans
kmeans = KMeans(init="k-means++", n_clusters=num_clusters, n_init=4, random_state=0)
bench_k_means(kmeans=kmeans, name="k-means++", data=data, labels=labels)
#compares it to a randomly generated scatter graph with same sample size
kmeans = KMeans(init="random", n_clusters=num_clusters, n_init=4, random_state=0)
bench_k_means(kmeans=kmeans, name="random", data=data, labels=labels)
pca = PCA(n_components=num_clusters).fit(data)
kmeans = KMeans(init=pca.components_, n_clusters=num_clusters, n_init=1)
bench_k_means(kmeans=kmeans, name="PCA-based", data=data, labels=labels)
print(80 * "_")
def get_names(num_groups)->list:
"""Made this so I can add names to the dots in the matplotlib charts.
:returns: array of strings with names of each person [g#, letter], where g# is the group number and letter is the person in the group (person a, person b, person c, person d)"""
total_participants=num_groups
names=[]
p=None
for i in range(num_groups*4):
if i % 4 == 0:
p=4
else:
p=i%4
names.append(f'g{(i//4)+1}, {chr(96+p)}')
return names
def main():
num_groups=11
directory="/Graphs/Groups/"
graph_name="new_kmeans_laplacian_energies_for_3features"
#load json data - must give a file name, can also take another folder relative to the location of the current file that calls it in the directory
prox_data=DataSet("proximity_graphs.json", my_directed=False)
convo_data=DataSet("conversation_graphs.json", my_directed=True)
atten_data=DataSet("shared_attention_graphs.json", my_directed=False)
data_sets=3
# row is person, col is data sets
group_data=np.zeros((num_groups, data_sets))
#create group data of energies
for i in range(num_groups):
group_data[i][0]=prox_data.get_group_laplacian_energy(i+1)
group_data[i][1]=convo_data.get_group_laplacian_energy(i+1)
group_data[i][2]=atten_data.get_group_laplacian_energy(i+1)
# determine # of clusters
finder = OptimalClusterFinder(data=group_data, max_clusters=10, graph_name=graph_name,directory=directory)
finder.find_optimal_clusters()
optimal_clusters = finder.get_optimal_clusters()
print(f"")
finder.plot_combined_metrics()
# Tell computer to divide in these number of clusters
num_clusters = 3 # used elbow method(data). for our data it was good at 3 n_clusters ... maybe 4 is better? Check the graph. I feel like it's a small change 3, 4.
#number of clusters breaks 4 even though i want to try 4
data=group_data
print(data)
# Create KMeans model and fit the data
kmeans = KMeans(n_clusters=num_clusters, random_state=21) # seed at 21 because of forever 21
kmeans.fit(data)
# After the model is made, get the cluster centroids and labels
centroids = kmeans.cluster_centers_ # the center points of the cluster generated by the Kmeans model for each feature
labels = kmeans.labels_ # returns labels for each feature - this is useful because it tells us who is in what roles
# Make silhouette scores core each person
silhouette_scores = silhouette_samples(data, labels)
# Print silhouette scores
for i, score in enumerate(silhouette_scores):
if i % 4 == 0:
p=4
else:
p=i%4
print(f"Group {i+1}: Silhouette Score = {score:.3f}")
roles=[[] for _ in range(num_clusters)] # 3 if 3 labels, 4 if 4 labels. undecided
p=None
for i, (label, score) in enumerate(zip(labels, silhouette_scores)):
if i % 4 == 0:
p=4
else:
p=i%4
roles[label].append(f'{i+1}:{score:.3f}')
### prints roles define by k cluster
print('\n'+graph_name)
print(f'Role 1\tRole 2\tRole 3')#there is 3 if num_clusters=3
print(22 * "_")
for element in itertools.zip_longest(*roles):
print(f'{element[0]}\t{element[1]}\t{element[2]}')#there is 3 if num_clusters=3
# this benchmark only works if cluster is less than 3 because it is comparing it with PCA-based method which has that constraint
# benchmarks(kmeans=kmeans, num_clusters=num_clusters, data=data, labels=labels)
data=group_data
####### Plotting - 3 Features ######
# Plotting the results in 3D using axes 3d. Recommend matplotlib for 2d
fig = plt.figure(figsize=(11, 7))
gs = fig.add_gridspec(2, 3)
ax = fig.add_subplot(gs[0, :], projection='3d')
# Scatter plot
for i in range(num_clusters):
ax.scatter(data[labels == i, 0], data[labels == i, 1], data[labels == i, 2], label=f'Cluster {i + 1}')
# Add labels to the dots
name_labels=list(range(1, 12))
for i in range(num_groups):
ax.text(data[i][0],data[i][1],data[i][2], name_labels[i], fontsize=9)
# Plot centroids - center dots for clusters
ax.scatter(centroids[:, 0], centroids[:, 1], centroids[:, 2], s=350, c='red', marker='X', label='Centroids')
ax.set_title('KMeans Clustering in 3 Feature with Laplacian Group Energies')
ax.set_xlabel('Prox Count') # feature 1 - aka ndarray col 0
ax.set_ylabel('Talking Duration') # feature 2 - aka ndarray col 1
ax.set_zlabel('Shared Atten Count') # feature 3 - aka ndarray col 2
ax.legend()
######## Plotting 2 feature of 3 feature Graph#####
x_axis=1 #talking duration
y_axis=2 #attention
ax1 = fig.add_subplot(gs[1, 1])
# Scatter plot
for i in range(num_clusters):
ax1.scatter(data[labels == i, x_axis], data[labels == i, y_axis], label=f'Cluster {i + 1}')
# labels put in the plot
for i in range(num_groups):
ax1.text(data[i, x_axis], data[i, y_axis], name_labels[i]) # Label each point with its index
# Plot centroids - center dots for clusters
ax1.scatter(centroids[:, x_axis], centroids[:, y_axis], s=350, c='red', marker='X', label='Centroids')
ax1.set_title("Talking and Attention")
ax1.set_xlabel(f'Talking Duration')
ax1.set_ylabel(f'Shared Attention')
ax1.legend()
######## Plotting 2 feature of 3 feature Graph#####
x_axis=0 #proximity
y_axis=1 #talking
ax2 = fig.add_subplot(gs[1, 0])
# Scatter plot
for i in range(num_clusters):
ax2.scatter(data[labels == i, x_axis], data[labels == i, y_axis], label=f'Cluster {i + 1}')
# labels put in the plot
for i in range(num_groups):
ax2.text(data[i, x_axis], data[i, y_axis], name_labels[i]) # Label each point with its index
# Plot centroids - center dots for clusters
ax2.scatter(centroids[:, x_axis], centroids[:, y_axis], s=350, c='red', marker='X', label='Centroids')
ax2.set_title("Proximity and Talking")
ax2.set_xlabel(f'Proximity')
ax2.set_ylabel(f'Talking Duration')
ax2.legend()
x_axis=0 #Proximity
y_axis=2 #attention
ax3 = fig.add_subplot(gs[1, 2])
# Scatter plot
for i in range(num_clusters):
ax3.scatter(data[labels == i, x_axis], data[labels == i, y_axis], label=f'Cluster {i + 1}')
# labels put in the plot
for i in range(num_groups):
ax3.text(data[i, x_axis], data[i, y_axis], name_labels[i]) # Label each point with its index
# Plot centroids - center dots for clusters
ax3.scatter(centroids[:, x_axis], centroids[:, y_axis], s=350, c='red', marker='X', label='Centroids')
ax3.set_title("Proximity and Attention")
ax3.set_xlabel(f'Proximity')
ax3.set_ylabel(f'Shared Attention')
ax3.legend()
# Add Verticle Space Padding
plt.subplots_adjust(hspace=0.5)
# Space padding around fig
plt.tight_layout(pad=2.0)
#must save before show
path=os.getcwd()
path += directory
path += graph_name +".png"
plt.savefig(path)
#show
plt.show()
if __name__ == "__main__":
main()