-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
119 lines (92 loc) · 4.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import csv
from DataSet import DataSet #custom class
import numpy as np
def load_csv(file_name:str, directory:str="Data/")->list:
"""Load CSV from Data directory.
:param file_name: Filename
:param directory: Directory where file is stored.
Return:
CSV data as a list contain a list for rows. Each row represents a group."""
if os.path.isfile(directory + file_name) and os.access(directory + file_name, os.R_OK):
file_path = directory + file_name
with open(file_path, 'r') as file:
csv_reader = csv.reader(file)
data = []
for row in csv_reader:
data.append(row)
return data
def clean_compeletion_csv(data:list)->tuple:
"""Cleans up time/accuracy CSV for convient use.
:param data: List of list from load_csv(file_name) where each row is a group.
Returns:
List of tuples (time (in secs):float, accuracy as percentage:float) with each row represents a group."""
clean_data=[]
data=data[1:]
for row in data:
junk, junk2, time = row[1].split()
hours, minutes, seconds = map(float, time.split(':'))
in_seconds = minutes * 60 + seconds
clean_data.append((in_seconds,float(row[2])))
return clean_data
# stubs
def map_label_participant():
"""## To Do?: make a mapping eventually
### {
'person1group1':0,
'person2group1':1,
'person3group1':2,
'person4group1':3,
'person1group2':4,
### }
## Don't do it until we know we need it"""
return None
def stub(my_string:str="stub")->str:
"""function stub
:param my_string: a string
Returns:
str: a string"""
return my_string
def main():
num_groups=11
total_participants=num_groups*4
#loads csv data
compelition=clean_compeletion_csv(load_csv("completion_time_and_accuracy.csv"))
# print time of first group - note: first in the tuple
print(f"Time of first Group:\t\t{compelition[0][0]}\n")
#print(compelition[0][0])
# print accuracy of first group - note: seconds in the tuple
print(f"accuracy of first Group:\t{compelition[0][1]}\n")
#print(compelition[0][1])
#load json data - must give a file name, can also take another folder relative to the location of the current file that calls it in the directory
convo_data=DataSet("conversation_graphs.json")
prox_data=DataSet("proximity_graphs.json")
atten_data=DataSet("shared_attention_graphs.json")
# How to use Dataset
# print json
# prox_data.print_json() # it's long
# print list of adj matrix
# prox_data.print_adj_matrix() # it's long
# Gets numpy ajacency matrix from a group
print(f"Numpy Adjacency Matrix from Group:\n{prox_data.get_group_matrix(2)}\n")
# calculate nodes of group and puts it in a list - order of participant: a, b, c, d
print(f"Calculates Nodes of group:\n{prox_data.get_sum_group_nodes(2)}\n")
# calculate all nodes of dataset in a list - order by group number (and participant is ordered is a, b, c, d)
print(f"Calculated nodes of dataset; ordered [a,b,c,d]:\n" +
f"{prox_data.get_sum_all_nodes()}\n")
#numpy array where data set is column and nodes are rows
all_data=np.zeros((total_participants,3))
for i in range(total_participants):
all_data[i][0]=prox_data.get_sum_all_nodes()[i]
all_data[i][1]=convo_data.get_sum_all_nodes()[i]/3 # it's the same amount 3 times - can we divide by 3
all_data[i][2]=atten_data.get_sum_all_nodes()[i]
# print(all_data) #it's long and gets converted to 64bit float which annoys me
# To Think About: get some sort of average for conversation/proximity/shared attention divided by time from completion data (maybe I'm wrong)
# To group members: to try stuff out on your own, maybe copy main.py as a templete since it loaded and transformt data
# rename your file so there aren't merge conflicts. Also, we should really talk to each other to figure out how to use kmeans
# Eigenvalues
print(f"Eigenvalues:\n{np.linalg.eig(atten_data.list_adj_matrix[0]).eigenvalues}\n")
#Eigenvector
print(f"Eigenvectors:\n{np.linalg.eig(atten_data.list_adj_matrix[0]).eigenvectors}\n")
if __name__ == "__main__":
main()