-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNeRF_modules.py
500 lines (417 loc) · 19.4 KB
/
NeRF_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import torch
import torch.nn as nn
import imageio
import cv2
import torch.nn.functional as torchf
import numpy as np
# Positional encoding (section 5.1)
class Embedder(nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.kwargs = kwargs
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
self.freq_bands = 2. ** torch.linspace(0., max_freq, steps=N_freqs)
else:
self.freq_bands = torch.linspace(2. ** 0., 2. ** max_freq, steps=N_freqs)
for freq in self.freq_bands:
for p_fn in self.kwargs['periodic_fns']:
out_dim += d
self.out_dim = out_dim
def forward(self, inputs):
# print(f"input device: {inputs.device}, freq_bands device: {self.freq_bands.device}")
self.freq_bands = self.freq_bands.type_as(inputs)
outputs = []
if self.kwargs['include_input']:
outputs.append(inputs)
for freq in self.freq_bands:
for p_fn in self.kwargs['periodic_fns']:
outputs.append(p_fn(inputs * freq))
return torch.cat(outputs, -1)
class EmbedderTime(Embedder):
def __init__(self, **kwargs):
assert kwargs['input_dims'] == 1
super().__init__(**kwargs)
self.dict_len = kwargs["dict_len"]
def foward(self, x):
super(EmbedderTime, self).foward(x / self.dict_len)
# Positional encoding (section 5.1)
class EmbedderWindowed(nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.kwargs = kwargs
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
self.freq_bands = 2. ** torch.linspace(0., max_freq, steps=N_freqs)
else:
self.freq_bands = torch.linspace(2. ** 0., 2. ** max_freq, steps=N_freqs)
for freq in self.freq_bands:
for p_fn in self.kwargs['periodic_fns']:
out_dim += d
self.out_dim = out_dim
self.freq_weight = np.ones(N_freqs)
self.window_start = self.kwargs['window_start']
self.window_size = self.kwargs['window_end'] - self.window_start
self.update_activate_freq(1e15)
def update_activate_freq(self, step):
alpha = (step - self.window_start) / self.window_size
alpha = max(min(alpha, 1), 0)
alpha = alpha * len(self.freq_bands)
freq_bands_idx = np.arange(len(self.freq_bands))
self.freq_weight = (1 - np.cos(np.pi * np.clip(alpha - freq_bands_idx, 0, 1))) / 2
def forward(self, inputs):
# print(f"input device: {inputs.device}, freq_bands device: {self.freq_bands.device}")
self.freq_bands = self.freq_bands.type_as(inputs)
outputs = []
if self.kwargs['include_input']:
outputs.append(inputs)
for freq, freq_w in zip(self.freq_bands, self.freq_weight):
for p_fn in self.kwargs['periodic_fns']:
outputs.append(p_fn(inputs * freq) * freq_w)
return torch.cat(outputs, -1)
class EmbedderTimeWindowed(EmbedderWindowed):
def __init__(self, **kwargs):
assert kwargs['input_dims'] == 1
super().__init__(**kwargs)
self.dict_len = kwargs["dict_len"]
def foward(self, x):
super(self).foward(x / self.dict_len)
class DictEmbedder(nn.Module):
def __init__(self, latent_size, dict_len):
super(DictEmbedder, self).__init__()
latent_tdirs = torch.zeros(dict_len, latent_size)
self.register_parameter("latent_tdirs", nn.Parameter(latent_tdirs, requires_grad=True))
def forward(self, x):
x = x.type(torch.long).squeeze(-1)
return self.latent_tdirs[x]
class DictEmbedderWindowed(nn.Module):
def __init__(self, latent_size, dict_len, end_step):
super(DictEmbedderWindowed, self).__init__()
latent_tdirs = torch.zeros(dict_len, latent_size)
self.register_parameter("latent_tdirs", nn.Parameter(latent_tdirs, requires_grad=True))
self.end_step = end_step
self.step = 0
print(f"Setting dict embedder's end_step to {self.end_step}")
def update_activate_freq(self, step):
self.step = step
def forward(self, x):
x = x.type(torch.long).squeeze(-1)
embed = self.latent_tdirs[x]
if self.step < self.end_step:
embed = embed.detach()
return embed
def get_embedder(multires, embed_type='pe', input_dim=3,
window_start=0, window_end=-1, # when end>0 means windowed embedder
dict_len=-1, latent_size=-1, # when >0 means time embedder else general embedder
log2_hash_size=19, finest_resolution=1024 # args for hashembedder
):
if (latent_size == 0 and embed_type == "latent") \
or (multires == 0 and embed_type == "pe")\
or (multires == 0 and embed_type == "hash"):
return lambda x: torch.ones_like(x[..., :0]), 0
embed_kwargs = {
'include_input': True,
'input_dims': input_dim,
'max_freq_log2': multires - 1,
'num_freqs': multires,
'log_sampling': True,
'periodic_fns': [torch.sin, torch.cos],
}
if embed_type == "pe":
# if dict_len > 0: # time embedder
# embed_kwargs["dict_len"] = dict_len
# embed_kwargs["input_dims"] = 1
# if window_end <= 0:
# embedder_obj = EmbedderTime(**embed_kwargs)
# else:
# embed_kwargs["window_start"] = window_start
# embed_kwargs["window_end"] = window_end
# embedder_obj = EmbedderTimeWindowed(**embed_kwargs)
# else: # other embedder
if window_end <= 0:
embedder_obj = Embedder(**embed_kwargs)
else:
embed_kwargs["window_start"] = window_start
embed_kwargs["window_end"] = window_end
embedder_obj = EmbedderWindowed(**embed_kwargs)
return embedder_obj, embedder_obj.out_dim
elif embed_type == "none":
return lambda x: x, input_dim
elif embed_type == "latent":
if window_end <= 0:
return DictEmbedder(latent_size, dict_len), latent_size
else:
return DictEmbedderWindowed(latent_size, dict_len, window_end), latent_size
elif embed_type == "hash":
raise NotImplementedError
# embed = HashEmbedder(n_indim=input_dim,
# log2_hashmap_size=log2_hash_size,
# finest_resolution=2 ** multires)
return embed, embed.out_dim
else:
raise RuntimeError(f"Unrecognized embedder type {embed_type}")
# Model
class NeRFmlp(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, input_ch_latent_t=0,
output_ch=4, skips=[4], use_viewdirs=False):
"""
input_ch_latent_t: set to 0 to disable latent_t
"""
super(NeRFmlp, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.input_ch_latent_t = input_ch_latent_t
self.skips = skips
self.use_viewdirs = use_viewdirs
self.pts_linears = nn.ModuleList(
[nn.Linear(input_ch + input_ch_latent_t, W)]
+ [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D - 1)])
### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105)
# self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W // 2)])
### Implementation according to the paper
self.views_linears = nn.ModuleList(
[nn.Linear(input_ch_views + W, W // 2)] + [nn.Linear(W // 2, W // 2) for i in range(D // 2)])
if use_viewdirs:
self.alpha_linear = nn.Linear(W, 1)
self.feature_linear = nn.Linear(W, W)
self.rgb_linear = nn.Linear(W // 2, 3)
else:
self.output_linear = nn.Linear(W, output_ch)
def forward(self, x):
input_pts, input_views, input_latent_t = torch.split(x, [self.input_ch, self.input_ch_views,
self.input_ch_latent_t], dim=-1)
h = torch.cat([input_pts, input_latent_t], -1)
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h)
h = torch.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
if self.use_viewdirs:
alpha = self.alpha_linear(h)
feature = self.feature_linear(h)
h = torch.cat([feature, input_views], -1)
for i, l in enumerate(self.views_linears):
h = self.views_linears[i](h)
h = torch.relu(h)
rgb = self.rgb_linear(h)
outputs = torch.cat([rgb, alpha], -1)
else:
outputs = self.output_linear(h)
return outputs
# Model
class GeneralMLP(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_view=0, input_ch_time=0,
view_layer_idx=0, time_layer_idx=0,
output_ch=3, skips=[4]):
super().__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_time = input_ch_time
self.input_ch_views = input_ch_view
self.view_layer_idx = [view_layer_idx] if isinstance(view_layer_idx, int) else view_layer_idx
self.time_layer_idx = [time_layer_idx] if isinstance(time_layer_idx, int) else time_layer_idx
self.view_layer_idx = [i if i >= 0 else D + i for i in self.view_layer_idx]
self.time_layer_idx = [i if i >= 0 else D + i for i in self.time_layer_idx]
self.skips = skips
assert all([i < D - 1 for i in self.time_layer_idx])
assert all([i < D - 1 for i in self.view_layer_idx])
assert all([i < D - 1 for i in self.skips])
layers = []
for i in range(D):
cnl_in = self.input_ch if i == 0 else W
if i in skips:
cnl_in += self.input_ch
if i in self.view_layer_idx:
cnl_in += self.input_ch_views
if i in self.time_layer_idx:
cnl_in += self.input_ch_time
cnl_out = output_ch if i == D - 1 else W
layers.append(nn.Linear(cnl_in, cnl_out))
self.mlp = nn.ModuleList(layers)
def forward(self, x):
input_pts, input_views, input_time = torch.split(x, [self.input_ch, self.input_ch_views,
self.input_ch_time], dim=-1)
h = input_pts
for i, layer in enumerate(self.mlp[:-1]):
if i in self.skips:
h = torch.cat([h, input_pts], -1)
if i in self.view_layer_idx:
h = torch.cat([h, input_views], -1)
if i in self.time_layer_idx:
h = torch.cat([h, input_time], -1)
h = torch.relu(layer(h))
return self.mlp[-1](h)
# texture map
class TextureMap(nn.Module):
def __init__(self, resolution, face_roi, output_ch=3, activate=None, grad_multiply=1.):
super().__init__()
self.resolution = resolution
self.cnl = output_ch
self.face_roi = face_roi
self.activate = activate if activate is not None else lambda x: x
texture_map = torch.zeros(1, output_ch, resolution, resolution)
self.register_parameter("texture_map", nn.Parameter(texture_map, requires_grad=True))
def increase_grad_hook(module, grad_in, grad_out):
return (grad_in[0] * grad_multiply,)
if grad_multiply > 1:
self.register_backward_hook(increase_grad_hook)
def load(self, path, isfull=False):
initial_texture_map = imageio.imread(path)
if isfull:
size_face = self.resolution
start_ = 0
else:
size_face = int(self.face_roi * self.resolution)
start_ = (self.resolution - size_face) // 2
print(f"face_roi = {self.face_roi}")
print(f"Resizing the texture map from {initial_texture_map.shape} to {(size_face, size_face)}")
initial_texture_map = cv2.resize(initial_texture_map, (size_face, size_face),
interpolation=cv2.INTER_LINEAR)
initial_texture_map = initial_texture_map / 255
if initial_texture_map.shape[-1] == 4:
initial_texture_map = initial_texture_map[..., :3] * initial_texture_map[..., 3:4]
initial_texture_map = (torch.tensor(initial_texture_map).permute(2, 0, 1)).type_as(self.texture_map)
# redo sigmoid if needed
if self.activate == torch.sigmoid:
initial_texture_map = torch.log(initial_texture_map / (- initial_texture_map + 1.)).clamp(-10, 10)
elif self.activate == "geometry":
initial_texture_map = (initial_texture_map - 128 / 255) * 20000
initial_texture_cnl = initial_texture_map.shape[0]
with torch.no_grad():
if self.cnl == initial_texture_cnl:
self.texture_map.detach()[0, :, start_:start_ + size_face, start_:start_ + size_face] \
= initial_texture_map
elif self.cnl > initial_texture_cnl:
print(f"Warning: the texture map has {self.cnl} channels, but the image has {initial_texture_cnl} cnls"
f" will only load as the first {initial_texture_cnl} channel")
self.texture_map.detach()[0, :initial_texture_cnl, start_:start_ + size_face, start_:start_ + size_face] \
= initial_texture_map
else: # self.cnl < initial_texture_cnl
print(f"Warning: the texture map has {self.cnl} channels, but the image has {initial_texture_cnl} cnls"
f" will load the first {self.cnl} channel")
self.texture_map.detach()[0, :, start_:start_ + size_face, start_:start_ + size_face] \
= initial_texture_map[:self.cnl]
return
def forward(self, x):
shape_ori = x.shape[:-1]
rgb = torchf.grid_sample(self.texture_map, x[..., :2].reshape(1, 1, -1, 2),
mode='bilinear', padding_mode="zeros")
rgb = rgb.permute(0, 2, 3, 1).reshape(*shape_ori, -1)
return rgb
# Model
class TextureMLP(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=0, input_ch_latent_t=0,
output_ch=4, skips=(4,)):
"""
input_ch_latent_t: set to 0 to disable latent_t
"""
super().__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.input_ch_latent_t = input_ch_latent_t
self.skips = skips
self.pts_linears = nn.ModuleList(
[nn.Linear(input_ch, W)]
+ [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D - 1)])
### Implementation according to the paper
self.views_linears = nn.ModuleList(
[nn.Linear(input_ch_views + input_ch_latent_t + W, W)] + [nn.Linear(W, W) for i in range(2)])
if input_ch_views > 0:
self.alpha_linear = nn.Linear(W, 1)
self.feature_linear = nn.Linear(W, W)
self.rgb_linear = nn.Linear(W, output_ch)
else:
self.output_linear = nn.Linear(W, output_ch)
def forward(self, x):
input_pts, input_views, input_latent_t = torch.split(x, [self.input_ch, self.input_ch_views,
self.input_ch_latent_t], dim=-1)
h = input_pts
# TODO
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h)
h = torch.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
if self.input_ch_views > 0:
feature = self.feature_linear(h)
h = torch.cat([feature, input_views, input_latent_t], -1)
for i, l in enumerate(self.views_linears):
h = self.views_linears[i](h)
h = torch.relu(h)
outputs = self.rgb_linear(h)
else:
outputs = self.output_linear(h)
return outputs
# Model
class TextureFuse(nn.Module):
def __init__(self, *, uv_embedder, D=8, W=256, input_ch=3,
input_ch_view=0, input_ch_time=0,
view_layer_idx=0, time_layer_idx=0, skips=(3,),
resolution=1024, face_roi=0.8, output_ch=3, activate=None,
texture_map_gradient_multiply=1.):
"""
input_ch_latent_t: set to 0 to disable latent_t
"""
super().__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_view
self.input_ch_latent_t = input_ch_time
self.skips = skips
self.resolution = resolution
self.cnl = output_ch
self.face_roi = face_roi
self.activate = activate if activate is not None else lambda x: x
self.uv_embed_fn = uv_embedder
self.texture_map_gradient_multiply = texture_map_gradient_multiply
self.mlp = GeneralMLP(D, W, input_ch, input_ch_view, input_ch_time,
view_layer_idx=view_layer_idx, time_layer_idx=time_layer_idx, skips=skips,
output_ch=output_ch + 1)
# will only use map_mlp or map_tex
self.map = GeneralMLP(D, W, input_ch, 0, 0, skips=skips,
output_ch=output_ch)
self.map_overlay = None
def promote_texture(self, mlp2map=True):
if isinstance(self.map, TextureMap):
print("TextureFuse::Warning!!! the map is alread a texture map, "
"which shouldn't happen, will do nothing but return")
return
if not mlp2map:
print("TextureFuse::Warning!!! mlp2map is set to False, which shouldn't happened usually")
self.map = TextureMap(self.resolution, self.face_roi, self.cnl, self.activate,
self.texture_map_gradient_multiply)
return
with torch.no_grad():
uv = torch.meshgrid([torch.linspace(-1, 1, self.resolution), torch.linspace(-1, 1, self.resolution)])
uv = [uv[1], uv[0]] # transpose
uv = torch.stack(uv, dim=-1).reshape(-1, 2)
embed = self.uv_embed_fn(uv)
chunk = 1024 * 4
outputs = torch.cat([self.map(embed[i: i + chunk]) for i in range(0, len(embed), chunk)],
dim=0)
texture = outputs.reshape(1, self.resolution, self.resolution, 3).permute(0, 3, 1, 2)
self.map = TextureMap(self.resolution, self.face_roi, self.cnl, self.activate,
self.texture_map_gradient_multiply)
self.map.texture_map.copy_(texture)
print("TextureFuse::the first layer now converted to explicit texture map")
def forward(self, x):
map_rgb = self.map(x[..., :self.input_ch])
mlp_rgba = self.mlp(x)
# if self.map_overlay is not None:
return torch.cat([map_rgb, mlp_rgba], dim=-1)