-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
549 lines (487 loc) · 24.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import os
import torch
import imageio
import numpy as np
import math
import torch.nn as nn
import time
from NeRF import *
from torch.utils.tensorboard import SummaryWriter
from configs import config_parser
from dataloader import load_data, load_images, load_masks, load_position_maps, has_matted, load_matted
from utils import *
import shutil
from datetime import datetime
from metrics import compute_img_metric
import cv2
torch.set_default_tensor_type('torch.cuda.FloatTensor')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train():
parser = config_parser()
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# set up multi-processing
if args.gpu_num == -1:
args.gpu_num = torch.cuda.device_count()
print(f"Using {args.gpu_num} GPU(s)")
imgpaths, poses, intrinsics, bds, render_poses, render_intrinsics = load_data(datadir=args.datadir,
factor=args.factor,
bd_factor=args.bd_factor,
frm_num=args.frm_num,
frm_start=args.frm_start)
has_matted_image = has_matted(imgpaths[0])
if has_matted_image:
print('Has matted image, load rgba from images_rgba')
else:
print('Couldn\'t find matted image, will use images and masks')
T = len(imgpaths)
V = len(imgpaths[0])
H, W = imageio.imread(imgpaths[0][0]).shape[0:2]
print('Loaded llff', T, V, H, W, poses.shape, intrinsics.shape, render_poses.shape, render_intrinsics.shape,
bds.shape)
args.time_len = T
args.roibox = bds
# Move testing data to GPU
render_poses = torch.tensor(render_poses).to(device)
render_intrinsics = torch.tensor(render_intrinsics).to(device)
test_ids = [int(id_) for id_ in args.test_ids.split(',')]
train_ids = np.array([i for i in np.arange(int(V)) if i not in test_ids]).tolist()
print('Training views are', train_ids)
print('Test views are', test_ids)
#######
# load uv map
basenames = [os.path.basename(ps_[0]).split('.')[0] for ps_ in imgpaths]
period = args.uv_map_gt_skip_num + 1
basenames = basenames[::period]
uv_gt_id2t = np.arange(0, T, period)
assert(len(uv_gt_id2t) == len(basenames))
t2uv_gt_id = np.repeat(np.arange(len(basenames)), period)[:T]
print("load position maps")
uv_gts = load_position_maps(args.datadir, args.factor, basenames)
uv_gts = torch.tensor(uv_gts).cuda()
# transform uv from (0, 1) to (- uv_map_face_roi, uv_map_face_roi)
uv_gts[..., 3:] = uv_gts[..., 3:] * (2 * args.uv_map_face_roi) - args.uv_map_face_roi
args.uv_gts = uv_gts
args.t2uv_gt_id = t2uv_gt_id
# Summary writers
writer = SummaryWriter(os.path.join(args.expdir, args.expname))
# Create nerf model
if args.nerf_type == 'NeRFModulateT':
nerf = NeRFModulateT(args)
elif args.nerf_type == 'NeUVFModulateT':
nerf = NeUVFModulateT(args)
elif args.nerf_type == 'NeRFTemporal':
nerf = NeRFTemporal(args)
else:
raise RuntimeError(f"nerf_type {args.nerf_type} not recognized")
nerf = nn.DataParallel(nerf, list(range(args.gpu_num)))
optimizer = torch.optim.Adam(params=nerf.parameters(), lr=args.lrate, betas=(0.9, 0.999))
######################
# if optimize poses
poses = torch.tensor(poses)
intrinsics = torch.tensor(intrinsics)
if args.optimize_poses:
rot_raw = poses[:, :3, :2]
tran_raw = poses[:, :3, 3]
intrin_raw = intrinsics[:, :2, :3]
# leave the first pose unoptimized
rot_raw0, tran_raw0, intrin_raw0 = rot_raw[:1], tran_raw[:1], intrin_raw[:1]
rot_raw = nn.Parameter(rot_raw[1:], requires_grad=True)
tran_raw = nn.Parameter(tran_raw[1:], requires_grad=True)
intrin_raw = nn.Parameter(intrin_raw[1:], requires_grad=True)
pose_optimizer = torch.optim.SGD(params=[rot_raw, tran_raw, intrin_raw],
lr=args.lrate / 5)
else:
rot_raw0, tran_raw0, intrin_raw0 = None, None, None
rot_raw, tran_raw, intrin_raw = None, None, None
pose_optimizer = None
##########################
# Load checkpoints
ckpts = [os.path.join(args.expdir, args.expname, f)
for f in sorted(os.listdir(os.path.join(args.expdir, args.expname))) if 'tar' in f]
print('Found ckpts', ckpts)
start = 0
if len(ckpts) > 0 and not args.no_reload:
ckpt_path = ckpts[-1]
print('Reloading from', ckpt_path)
ckpt = torch.load(ckpt_path)
start = ckpt['global_step']
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
smart_load_state_dict(nerf, ckpt)
if 'rot_raw' in ckpt.keys():
print("Loading poses and intrinsics from the ckpt")
rot_raw = ckpt['rot_raw']
tran_raw = ckpt['tran_raw']
intrin_raw = ckpt['intrin_raw']
poses, intrinsics = raw2poses(
torch.cat([rot_raw0, rot_raw]),
torch.cat([tran_raw0, tran_raw]),
torch.cat([intrin_raw0, intrin_raw]))
assert len(rot_raw) + 1 == V
print('Begin', args.batch_size)
global_step = start
start = start + 1
N_iters = args.N_iters + 1
batch_size = args.batch_size
i_batch0, i_batch1 = 0, 0
batch_size1 = int(batch_size * args.masked_sample_precent + 0.5)
batch_size0 = batch_size - batch_size1
t_list = []
if args.best_frame_idx >= 0:
t_list = [args.best_frame_idx] * int(T * 1.5)
ini_iteration_count = len(t_list) * args.itertions_per_frm
t_loaded = -1
per_frm_batch_size = H * W * len(train_ids)
rays = get_batched_rays_tensor(H, W, intrinsics, poses)
rays_raw = rays[train_ids].permute(0, 2, 3, 1, 4).reshape(-1, 2, 3).detach()
for i in range(start, N_iters):
# if i_batch >= per_frm_batch_size or i == start:
if i_batch0 + i_batch1 >= per_frm_batch_size or i == start:
# update training time
if len(t_list) == 0:
t_list = np.arange(T)
np.random.shuffle(t_list)
t = t_list[0]
t_list = np.delete(t_list, 0)
# maybe load the rays
if t != t_loaded: # need update:
if has_matted_image:
rgba = load_matted(imgpaths[t])[:, None, ...]
msks = (rgba[..., 3:4] > (1. / 255)).astype(np.float32)
else:
rgbs = load_images(imgpaths[t])[:, None, ...]
msks = load_masks(imgpaths[t])[:, None, ..., None]
rgbs = rgbs * msks
rgba = np.concatenate([rgbs, msks], axis=-1)
msks = msks.reshape(V, H, W)[train_ids]
msks = torch.tensor(msks).to(device)
msks_raw = (msks * 255).type(torch.uint8)
rgba = torch.tensor(rgba, dtype=torch.float32)
rgba_raw = rgba[train_ids].permute(0, 2, 3, 1, 4).reshape(-1, 4)
t_loaded = t
rand_idx = torch.randperm(rgba_raw.shape[0])
is_mask1 = msks_raw.reshape(-1)[rand_idx] # select masked idx and unmasked idx
rand_idx_ma1 = rand_idx[is_mask1 > 250] # 1 is the foreground and 0 is the background
rand_idx_ma0 = rand_idx[is_mask1 < 5]
per_frm_batch_size = min(len(rand_idx), batch_size * args.itertions_per_frm)
i_batch0, i_batch1 = 0, 0
# if smooth loss, then remove half of the batch and sample near the batch
if args.smooth_loss_weight > 0:
batch_idx = torch.cat([
rand_idx_ma0[i_batch0: i_batch0 + batch_size0: 2],
rand_idx_ma1[i_batch1: i_batch1 + batch_size1: 2]
])
batch_idx = batch_idx[:len(batch_idx) // 2]
batch_W = batch_idx % W
batch_H = batch_idx // W % H
batch_V = batch_idx // (H * W)
ishorizontal = torch.randint(0, 2, batch_H.shape).bool()
batch_W[ishorizontal] += 1
batch_W[batch_W >= W] -= 2
isvertical = torch.logical_not(ishorizontal)
batch_H[isvertical] += 1
batch_H[batch_H >= H] -= 2
batch_idx1 = batch_V * (H * W) + batch_H * W + batch_W
batch_idx = torch.stack([batch_idx, batch_idx1], dim=1)
batch_idx = batch_idx.reshape(-1)
else: # normal sampling
batch_idx = torch.cat([
rand_idx_ma0[i_batch0: i_batch0 + batch_size0],
rand_idx_ma1[i_batch1: i_batch1 + batch_size1]
])
# if optimizing camera poses, regenerating the rays
if args.optimize_poses and global_step >= args.optimize_poses_start:
poses, intrinsics = raw2poses(
torch.cat([rot_raw0, rot_raw]),
torch.cat([tran_raw0, tran_raw]),
torch.cat([intrin_raw0, intrin_raw]))
rays = get_batched_rays_tensor(H, W, intrinsics, poses)
rays_raw = rays[train_ids].permute(0, 2, 3, 1, 4).reshape(-1, 2, 3)
batch_rays = rays_raw[batch_idx]
target_s = rgba_raw[batch_idx]
i_batch0 += batch_size0
i_batch1 += batch_size1
##### Core optimization loop #####
nerf.train()
if hasattr(nerf.module, "update_step"):
nerf.module.update_step(global_step)
if hasattr(nerf.module, "set_explicit_warp_grad"):
grad_explicit = global_step >= ini_iteration_count
nerf.module.set_explicit_warp_grad(grad_explicit)
rgba, rgba0, extra = nerf(H, W, t=t, rays=batch_rays.reshape(-1, 2, 3), chunk=args.chunk)
# RGB loss
img_loss = img2mse(rgba, target_s)
psnr = mse2psnr(img_loss)
if args.not_supervise_rgb0 or rgba0 is None:
print("Warning!! not supervising rgb0")
img_loss0 = 0
else:
img_loss0 = img2mse(rgba0, target_s)
# UV loss
if args.uv_loss_weight > 0:
uv_id = t2uv_gt_id[t]
uv_t = uv_gt_id2t[uv_id]
uv_gt = uv_gts[uv_id]
if args.uv_batch_size > len(uv_gt):
uv_gt_batch = uv_gt
else:
selection = np.random.choice(len(uv_gt), args.uv_batch_size, replace=False)
uv_gt_batch = uv_gt[selection]
pts, uv_target = uv_gt_batch.split([3, 2], dim=-1)
if args.uv_loss_noise_std > 0:
noise = torch.randn_like(pts) * args.uv_loss_noise_std
pts += noise
viewdirs = torch.randn_like(pts)
viewdirs = viewdirs / viewdirs.norm(dim=-1, keepdim=True)
pts_viewdir = torch.cat([pts, viewdirs], dim=-1)
uv, uv0, _, _ = nerf(H, W, t=uv_t, chunk=args.chunk, pts_viewdir=pts_viewdir)
uv_loss0 = torch.norm(uv0 - uv_target, dim=-1).mean()
uv_loss = torch.norm(uv - uv_target, dim=-1).mean()
uv_loss = uv_loss0 + uv_loss
uv_decay_steps = args.uv_loss_decay * 1000
new_uv_loss_weight = args.uv_loss_weight * (0.1 ** (global_step / uv_decay_steps))
if new_uv_loss_weight < 0.002:
print("Removing the uv smooth term")
args.uv_loss_weight = 0
else:
uv_loss = 0
new_uv_loss_weight = 0
# Sparsity loss
if args.sparsity_loss_weight > 0:
new_sparisty_loss_weight = args.sparsity_loss_weight \
if global_step > args.sparsity_loss_start_step else 0
sparsity_loss = extra["sparsity"].mean()
else:
sparsity_loss = 0
new_sparisty_loss_weight = 0
# neutex_cycle_loss
if args.cycle_loss_weight > 0:
cycle_decay_steps = args.cycle_loss_decay * 1000
new_cycle_loss_weight = args.cycle_loss_weight * (0.1 ** (global_step / cycle_decay_steps))
if new_cycle_loss_weight < 0.002:
print("Removing the cycle loss term")
args.cycle_loss_weight = 0
cycle_loss = extra["cycle"].mean()
else:
new_cycle_loss_weight = 0
cycle_loss = 0
# alpha sparisty loss
if args.alpha_loss_weight > 0:
alpha_decay_steps = args.alpha_loss_decay * 1000
new_alpha_loss_weight = args.alpha_loss_weight * (0.1 ** (global_step / alpha_decay_steps))
alpha_loss = extra["alpha"].mean()
else:
new_alpha_loss_weight = 0
alpha_loss = 0
if args.smooth_loss_weight > 0:
smooth_loss = extra["smooth"].mean()
new_smooth_loss_weight = args.smooth_loss_weight * min(1, global_step / args.smooth_loss_start_decay)
else:
smooth_loss = 0
new_smooth_loss_weight = 0
if args.temporal_loss_weight > 0:
temporal_loss = extra["temporal"].mean()
new_temporal_loss_weight = args.temporal_loss_weight \
if global_step > args.temporal_loss_start_step else 0
else:
temporal_loss = 0
new_temporal_loss_weight = 0
if args.dsmooth_loss_weight > 0:
dsmooth_loss = extra["d_smooth"].mean()
new_dsmooth_loss_weight = args.dsmooth_loss_weight
else:
dsmooth_loss = 0
new_dsmooth_loss_weight = 0
if args.uvsmooth_loss_weight > 0:
uvsmooth_loss = extra["uv_smooth"].mean()
new_uvsmooth_loss_weight = args.uvsmooth_loss_weight
else:
uvsmooth_loss = 0
new_uvsmooth_loss_weight = 0
if args.uvprepsmooth_loss_weight > 0:
uvprepsmooth_loss = extra["uvp_smooth"].mean()
new_uvprepsmooth_loss_weight = args.uvprepsmooth_loss_weight
else:
uvprepsmooth_loss = 0
new_uvprepsmooth_loss_weight = 0
if args.gsmooth_loss_weight > 0:
gsmooth_decay_steps = args.gsmooth_loss_decay * 1000
gsmooth_loss = extra["g_smooth"].mean()
new_gsmooth_loss_weight = args.gsmooth_loss_weight * (0.1 ** (global_step / gsmooth_decay_steps))
else:
gsmooth_loss = 0
new_gsmooth_loss_weight = 0
if args.kpt_loss_weight > 0:
kpt_loss = extra["kpt"].mean()
new_kpt_loss_weight = args.kpt_loss_weight
else:
kpt_loss = 0
new_kpt_loss_weight = 0
loss = img_loss + img_loss0 \
+ new_uv_loss_weight * uv_loss \
+ new_sparisty_loss_weight * sparsity_loss \
+ new_cycle_loss_weight * cycle_loss \
+ new_alpha_loss_weight * alpha_loss \
+ new_smooth_loss_weight * smooth_loss \
+ new_temporal_loss_weight * temporal_loss \
+ new_dsmooth_loss_weight * dsmooth_loss \
+ new_uvsmooth_loss_weight * uvsmooth_loss \
+ new_uvprepsmooth_loss_weight * uvprepsmooth_loss \
+ new_gsmooth_loss_weight * gsmooth_loss \
+ new_kpt_loss_weight * kpt_loss
optimizer.zero_grad()
if args.optimize_poses and global_step >= args.optimize_poses_start:
pose_optimizer.zero_grad()
loss.backward()
optimizer.step()
if args.optimize_poses and global_step >= args.optimize_poses_start:
pose_optimizer.step()
# NOTE: IMPORTANT!
### update learning rate ###
decay_rate = 0.1
decay_steps = args.lrate_decay * 1000
new_lrate = args.lrate * (decay_rate ** (global_step / decay_steps))
for param_group in optimizer.param_groups:
param_group['lr'] = new_lrate
################################
if i % args.i_tensorboard == 0:
writer.add_scalar('aloss/psnr', psnr, i)
writer.add_scalar('aloss/mse_loss', loss, i)
writer.add_scalar('otherloss/uv_loss', uv_loss, i)
writer.add_scalar('otherloss/alpha_loss', alpha_loss, i)
writer.add_scalar('otherloss/sparse_loss', sparsity_loss, i)
writer.add_scalar('otherloss/cycle_loss', cycle_loss, i)
writer.add_scalar('otherloss/smooth_loss', smooth_loss, i)
writer.add_scalar('otherloss/temporal_loss', temporal_loss, i)
writer.add_scalar('otherloss/uvsmth_loss', uvsmooth_loss, i)
writer.add_scalar('otherloss/dsmth_loss', dsmooth_loss, i)
writer.add_scalar('otherloss/gsmth_loss', gsmooth_loss, i)
writer.add_scalar('otherloss/kpt_loss', kpt_loss, i)
writer.add_scalar('weight/lr', new_lrate, i)
writer.add_scalar('weight/uv_loss_weight', new_uv_loss_weight, i)
writer.add_scalar('weight/alpha_loss_weight', new_alpha_loss_weight, i)
writer.add_scalar('weight/cycle_loss_weight', new_cycle_loss_weight, i)
writer.add_scalar('weight/smooth_loss_weight', new_smooth_loss_weight, i)
writer.add_scalar('weight/temporal_loss_weight', new_temporal_loss_weight, i)
writer.add_scalar('weight/uvsmooth_loss_weight', new_uvsmooth_loss_weight, i)
if i % args.i_print == 0:
print(f"[TRAIN] Iter: {i} Loss: {loss.item()} PSNR: {psnr.item()}")
if i % args.i_weights == 0:
path = os.path.join(args.expdir, args.expname, '{:06d}.tar'.format(i))
save_dict = {
'global_step': global_step,
'network_state_dict': nerf.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
if args.optimize_poses:
save_dict['rot_raw'] = rot_raw
save_dict['tran_raw'] = tran_raw
save_dict['intrin_raw'] = intrin_raw
torch.save(save_dict, path)
print('Saved checkpoints at', path)
if i % args.i_testset == 0:
print("Save test views")
savedir = os.path.join(args.expdir, args.expname, 'testset_{:06d}'.format(i))
os.makedirs(savedir, exist_ok=True)
dummy_num = ((len(poses) - 1) // args.gpu_num + 1) * args.gpu_num - len(poses)
poses_tensor = poses.type_as(loss)
intrinsics_tensor = intrinsics.type_as(loss)
dummy_poses = torch.eye(3, 4).unsqueeze(0).expand(dummy_num, 3, 4).type_as(poses_tensor)
dummy_intrinsic = intrinsics_tensor[:dummy_num].clone()
print('render vary t: ', poses.shape, intrinsics.shape)
with torch.no_grad():
nerf.eval()
rgbs, disps = nerf(H, W, t,
poses=torch.cat([poses_tensor, dummy_poses], dim=0),
intrinsics=torch.cat([intrinsics_tensor, dummy_intrinsic], dim=0),
chunk=args.render_chunk)
rgbs = rgbs[:len(rgbs) - dummy_num]
disps = disps[:len(disps) - dummy_num]
rgbs = rgbs.cpu().numpy()
disps = disps.cpu().numpy()
for rgb_idx, rgb in enumerate(rgbs):
imageio.imwrite(os.path.join(savedir, f'rgb_{rgb_idx:03d}.png'), to8b(rgb))
imageio.imwrite(os.path.join(savedir, f'disp_{rgb_idx:03d}.png'), to8b(disps[rgb_idx]))
if i % args.i_eval == 0:
val_ts = [i_ for i_ in range(0, T, T // 6 + 1)]
print(f"Evaluating on view {test_ids} and time {val_ts}")
dummy_num = ((len(test_ids) - 1) // args.gpu_num + 1) * args.gpu_num - len(test_ids)
eval_poses = poses[test_ids].type_as(loss)
eval_intrinsics = intrinsics[test_ids].type_as(loss)
dummy_poses = torch.eye(3, 4).unsqueeze(0).expand(dummy_num, 3, 4).type_as(eval_poses)
dummy_intrinsic = eval_intrinsics[:1].clone().expand(dummy_num, 3, 3)
with torch.no_grad():
nerf.eval()
pred_images, gt_images, gt_masks = [], [], []
for val_t in val_ts:
rgbs, _ = nerf(H, W, val_t,
poses=torch.cat([eval_poses, dummy_poses], dim=0),
intrinsics=torch.cat([eval_intrinsics, dummy_intrinsic], dim=0),
chunk=args.render_chunk)
rgbs = rgbs[:len(rgbs) - dummy_num]
pred_images.append(rgbs)
eval_imgpaths = imgpaths[val_t]
eval_imgpaths = [eval_imgpaths[i_] for i_ in test_ids]
if has_matted_image:
rgbas = load_matted(eval_imgpaths)
rgbs = torch.tensor(rgbas[..., :3], dtype=torch.float32, device='cpu')
msks = torch.tensor(rgbas[..., 3] > 0.5, dtype=torch.float32, device='cpu')
else:
rgbs = torch.tensor(load_images(eval_imgpaths), dtype=torch.float32, device='cpu')
msks = torch.tensor(load_masks(eval_imgpaths), dtype=torch.float32, device='cpu')
gt_images.append(rgbs)
gt_masks.append(msks)
pred_images = torch.cat(pred_images, dim=0).clamp(0, 1)
gt_images = torch.cat(gt_images, dim=0)
gt_masks = torch.cat(gt_masks)
test_mse = compute_img_metric(pred_images, gt_images, 'mse', mask=gt_masks)
test_psnr = compute_img_metric(pred_images, gt_images, 'psnr', mask=gt_masks)
test_ssim = compute_img_metric(pred_images, gt_images, 'ssim', mask=gt_masks)
writer.add_scalar("Test/MSE", test_mse, global_step)
writer.add_scalar("Test/PSNR", test_psnr, global_step)
writer.add_scalar("Test/SSIM", test_ssim, global_step)
if i % args.i_video == 0:
moviebase = os.path.join(args.expdir, args.expname, f'{i:06d}_')
if hasattr(nerf.module, "texture_map"):
print('saving texture map')
if T <= 1:
texture_maps = nerf.module.get_texture_map()
texture_maps = [tex[0, :3].detach().permute(1, 2, 0).cpu().numpy() for tex in texture_maps]
for ti, texture_map in enumerate(texture_maps):
imageio.imwrite(moviebase + f"_texture_{ti}.png", to8b(texture_map))
else:
texture_maps = []
for ti in range(T):
print(f"Get texture map {ti}")
texture_map = nerf.module.get_texture_map(t=ti)
texture_map = [to8b(tex[0, :3].detach().permute(1, 2, 0).cpu().numpy()) for tex in texture_map]
texture_maps.append(texture_map)
for ti in range(len(texture_maps[0])):
texture_map = [ts[ti] for ts in texture_maps]
imageio.mimwrite(moviebase + f"_texture_map_{ti}.mp4", texture_map, fps=30, quality=10)
print('render poses shape', render_poses.shape, render_intrinsics.shape)
with torch.no_grad():
nerf.eval()
dummy_num = ((len(render_poses) - 1) // args.gpu_num + 1) * args.gpu_num - len(render_poses)
dummy_poses = torch.eye(3, 4).unsqueeze(0).expand(dummy_num, 3, 4).type_as(render_poses)
dummy_intrinsic = render_intrinsics[:dummy_num].clone()
print(f"Append {dummy_num} # of poses to fill all the GPUs")
# with dynamic camera pose
if T > 1:
rgbs, disps = nerf(H, W,
poses=torch.cat([render_poses, dummy_poses], dim=0),
intrinsics=torch.cat([render_intrinsics, dummy_intrinsic], dim=0),
chunk=args.render_chunk)
rgbs = rgbs[:len(rgbs) - dummy_num]
disps = disps[:len(disps) - dummy_num]
disps = (disps - disps.min()) / (disps.max() - disps.min()).clamp_min(1e-10)
rgbs = rgbs.cpu().numpy()
disps = disps.cpu().numpy()
imageio.mimwrite(moviebase + '_dyn_rgb.mp4', to8b(rgbs), fps=30, quality=10)
imageio.mimwrite(moviebase + '_dyn_disp.mp4', to8b(disps / np.max(disps)), fps=30, quality=10)
global_step += 1
if __name__ == '__main__':
torch.set_default_tensor_type('torch.cuda.FloatTensor')
train()