-
Notifications
You must be signed in to change notification settings - Fork 479
/
Copy pathinference.py
83 lines (72 loc) · 4.18 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
import tensorflow as tf
import os, argparse
import cv2
from data import (
process_image_file,
process_image_file_medusa,
)
# To remove TF Warnings
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
parser = argparse.ArgumentParser(description='COVID-Net Inference')
parser.add_argument('--weightspath', default='models/COVIDNet-CXR-3', type=str,
help='Path to model files, defaults to \'models/COVIDNet-CXR-3\'')
parser.add_argument('--metaname', default='model.meta', type=str, help='Name of ckpt meta file')
parser.add_argument('--ckptname', default='model', type=str, help='Name of model ckpts')
parser.add_argument('--n_classes', default=2, type=int, help='Number of detected classes, defaults to 2')
parser.add_argument('--imagepath', default='assets/ex-covid.jpeg', type=str, help='Full path to image to be inferenced')
parser.add_argument('--in_tensorname', default='input_2:0', type=str, help='Name of input tensor to graph')
parser.add_argument('--in_tensorname_medusa', default='input_1:0', type=str,
help='Name of input tensor to MEDUSA graph for COVIDNet-CXR-3')
parser.add_argument('--out_tensorname', default='softmax/Softmax:0', type=str, help='Name of output tensor from graph')
parser.add_argument('--input_size', default=480, type=int, help='Size of input (ex: if 480x480, --input_size 480)')
parser.add_argument('--input_size_medusa', default=256, type=int,
help='Size of input to MEDUSA graph (ex: if 256x256, --input_size 256)')
parser.add_argument('--top_percent', default=0.08, type=float, help='Percent top crop from top of image')
parser.add_argument('--is_severity_model', action='store_true', help='Add flag if training COVIDNet CXR-S model')
parser.add_argument('--is_medusa_backbone', action='store_true',
help='Add flag if training COVIDNet CXR-3 model, do not include for other versions')
args = parser.parse_args()
if args.is_severity_model:
# For COVIDNet CXR-S training with COVIDxSev level 1 and level 2 air space seveirty grading
mapping = {'level2': 0, 'level1': 1}
inv_mapping = {0: 'level2', 1: 'level1'}
elif args.n_classes == 2:
# For COVID-19 positive/negative detection
mapping = {'negative': 0, 'positive': 1}
inv_mapping = {0: 'negative', 1: 'positive'}
elif args.n_classes == 3:
# For detection of no pneumonia/non-COVID-19 pneumonia/COVID-19 pneumonia
mapping = {'normal': 0, 'pneumonia': 1, 'COVID-19': 2}
inv_mapping = {0: 'normal', 1: 'pneumonia', 2: 'COVID-19'}
else:
raise Exception('''COVID-Net currently only supports 2 class COVID-19 positive/negative detection
or 3 class detection of no pneumonia/non-COVID-19 pneumonia/COVID-19 pneumonia''')
mapping_keys = list(mapping.keys())
sess = tf.Session()
tf.get_default_graph()
saver = tf.train.import_meta_graph(os.path.join(args.weightspath, args.metaname))
saver.restore(sess, os.path.join(args.weightspath, args.ckptname))
graph = tf.get_default_graph()
image_tensor = graph.get_tensor_by_name(args.in_tensorname)
pred_tensor = graph.get_tensor_by_name(args.out_tensorname)
if args.is_medusa_backbone:
x = process_image_file(args.imagepath, args.input_size, top_percent=0, crop=False)
x = x.astype('float32') / 255.0
medusa_image_tensor = graph.get_tensor_by_name(args.in_tensorname_medusa)
medusa_x = process_image_file_medusa(args.imagepath, args.input_size_medusa)
feed_dict = {
medusa_image_tensor: np.expand_dims(medusa_x, axis=0),
image_tensor: np.expand_dims(x, axis=0),
}
else:
x = process_image_file(args.imagepath, args.input_size, top_percent=args.top_percent)
x = x.astype('float32') / 255.0
feed_dict = {image_tensor: np.expand_dims(x, axis=0)}
pred = sess.run(pred_tensor, feed_dict=feed_dict)
print('Prediction: {}'.format(inv_mapping[pred.argmax(axis=1)[0]]))
print('Confidence')
print(' '.join('{}: {:.3f}'.format(cls.capitalize(), pred[0][i]) for cls, i in mapping.items()))
print('**DISCLAIMER**')
print('Do not use this prediction for self-diagnosis. You should check with your local authorities for the latest advice on seeking medical assistance.')