-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathplot_loss.py
101 lines (89 loc) · 3.81 KB
/
plot_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/python
import os
import re
import sys
import numpy as np
import matplotlib.pyplot as plt
TRAIN_LOSS_PATTERN = r"Iteration (\d+), loss = (\d+\.\d*)"
#TEST_LOSS_PATTERN = r"Iteration (\d+), Testing net \(#0\)\n.*\n.*\n.*\n.* rec_loss = (\d+\.\d+)"
#TEST_LOSS_PATTERN = r"Iteration (\d+), Testing net \(#0\)\n.*\n.* loss = (\d+\.\d+)"
#TEST_ACC_PATTERN = r"Iteration (\d+), Testing net \(#0\)\n.* accuracy = (\d+\.\d+)"
def main():
if len(sys.argv) > 1:
log_file_name = sys.argv[1]
else:
raise("please provide log file to process")
log_file = open(log_file_name, 'r')
log_data = log_file.read()
training_result = re.findall(TRAIN_LOSS_PATTERN,log_data)
#testing_result = re.findall(TEST_LOSS_PATTERN, log_data)
#testing_accuracy = re.findall(TEST_ACC_PATTERN, log_data)
train_iter = []
train_loss = []
test_iter = []
test_loss = []
test_acc_iter = []
test_acc = []
# test_loss_length = len(testing_result[0]) - 1
for train in training_result:
train_iter.append(int(train[0]))
train_loss.append(float(train[1]))
'''
for test in testing_result:
test_iter.append(int(test[0]))
temp_loss = 0
for i in range(test_loss_length):
temp_loss += float(test[i+1])
test_loss.append(temp_loss)
'''
#for test in testing_accuracy:
# test_acc_iter.append(int(test[0]))
# test_acc.append(float(test[1]))
#print test_iter
#print test_loss
# display
plt.plot(train_iter, train_loss, 'k', label='Train loss', linewidth=0.75)
#plt.plot(test_iter, test_loss, 'r', label='Test loss', linewidth=1.0)
#plt.plot(test_acc_iter, test_acc, 'b', label='Test accuracy', linewidth=1.0)
plt.legend()
#plt.minorticks_on()
plt.ylabel('Loss')
plt.xlabel('Iteration')
#plt.yticks(np.arange(0, 2.5, 0.1))
plt.grid()
plt.savefig(os.path.join(os.path.dirname(log_file_name), log_file_name) +'.png')
def disp_results(fig, ax1, ax2, loss_iterations, losses, accuracy_iterations, accuracies, accuracies_iteration_checkpoints_ind, fileName, color_ind=0):
modula = len(plt.rcParams['axes.color_cycle'])
acrIterations =[]
top_acrs={}
if accuracies.size:
if accuracies.size>4:
top_n = 4
else:
top_n = accuracies.size -1
temp = np.argpartition(-accuracies, top_n)
result_indexces = temp[:top_n]
temp = np.partition(-accuracies, top_n)
result = -temp[:top_n]
for acr in result_indexces:
acrIterations.append(accuracy_iterations[acr])
top_acrs[str(accuracy_iterations[acr])]=str(accuracies[acr])
sorted_top4 = sorted(top_acrs.items(), key=operator.itemgetter(1))
maxAcc = np.amax(accuracies, axis=0)
iterIndx = np.argmax(accuracies)
maxAccIter = accuracy_iterations[iterIndx]
maxIter = accuracy_iterations[-1]
consoleInfo = format('\n[%s]:maximum accuracy [from 0 to %s ] = [Iteration %s]: %s ' %(fileName,maxIter,maxAccIter ,maxAcc))
plotTitle = format('max accuracy(%s) [Iteration %s]: %s ' % (fileName,maxAccIter, maxAcc))
print (consoleInfo)
#print (str(result))
#print(acrIterations)
# print 'Top 4 accuracies:'
print ('Top 4 accuracies:'+str(sorted_top4))
plt.title(plotTitle)
ax1.plot(loss_iterations, losses, color=plt.rcParams['axes.color_cycle'][(color_ind * 2 + 0) % modula])
ax2.plot(accuracy_iterations, accuracies, plt.rcParams['axes.color_cycle'][(color_ind * 2 + 1) % modula], label=str(fileName))
ax2.plot(accuracy_iterations[accuracies_iteration_checkpoints_ind], accuracies[accuracies_iteration_checkpoints_ind], 'o', color=plt.rcParams['axes.color_cycle'][(color_ind * 2 + 1) % modula])
plt.legend(loc='lower right')
if __name__ == "__main__":
main()