-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathdropout.py
337 lines (265 loc) · 11.4 KB
/
dropout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from __future__ import print_function
import numpy as np
import os
import sys
import timeit
import six.moves.cPickle as pickle
import theano
import theano.tensor as T
import theano.tensor.shared_randomstreams
import gzip
from collections import OrderedDict
from logistic_sgd import LogisticRegression, load_data
from mlp import HiddenLayer
def _dropsout(rng, layer, p):
srng = theano.tensor.shared_randomstreams.RandomStreams(rng.randint(1000))
mask = srng.binomial(n=1, p=1-p, size=layer.shape)
output = layer*T.cast(mask, theano.config.floatX)
return output / (1 - p)
class DropoutMLP(object):
"""Multi-Layer Perceptron Class with partial hidden units
An implementation of Multilayer Perceptron with dropping of hidden units at a probability
given by ```1-dropout_rate```.
"""
def __init__(self, rng, input, n_in, n_hidden, dropout_rates, n_out):
"""Initialize the parameters for the multilayer perceptron
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_hidden: int
:param n_hidden: number of hidden units
:type dropout_rate: list
:param dropout_rate: array containing probabilities of retaining a unit
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie
"""
#Dropping out the input layer
inp_dropout_layer = _dropsout(rng, input, p=dropout_rates[0])
self.drop_layer = HiddenLayer(rng=rng,
input=inp_dropout_layer,
n_in=n_in, n_out=n_hidden,
activation=T.tanh)
self.drop_layer.output = _dropsout(rng, self.drop_layer.output, p=dropout_rates[1])
# Since we are dealing with a one hidden layer MLP, this will translate
# into a HiddenLayer with a tanh activation function connected to the
# LogisticRegression layer; the activation function can be replaced by
# sigmoid or any other nonlinear function
self.hiddenLayer = HiddenLayer(
rng=rng,
input=input,
n_in=n_in,
n_out=n_hidden,
W=self.drop_layer.W,
b=self.drop_layer.b,
activation=T.tanh
)
self.drop_output_layer = LogisticRegression(
input=self.drop_layer.output,
n_in=n_hidden,
n_out=n_out)
# The logistic regression layer gets as input the hidden units
# of the hidden layer
self.logRegressionLayer = LogisticRegression(
input=self.hiddenLayer.output,
n_in=n_hidden,
n_out=n_out,
W=self.drop_output_layer.W,
b=self.drop_output_layer.b,
)
self.drop_negative_log_likelihood = self.drop_output_layer.negative_log_likelihood
self.dropout_errors = self.drop_output_layer.errors
# negative log likelihood of the MLP is given by the negative
# log likelihood of the output of the model, computed in the
# logistic regression layer
self.negative_log_likelihood = (
self.logRegressionLayer.negative_log_likelihood
)
# same holds for the function computing the number of errors
self.errors = self.logRegressionLayer.errors
# the parameters of the model are the parameters of the two layer it is
# made out of
self.params = self.drop_layer.params + self.drop_output_layer.params
# end-snippet-3
# keep track of model input
self.input = input
# In[36]:
def test_mlp(learning_rate=0.01, n_epochs=1000, dropout_rates = [0.2, 0.5],
dataset='mnist.pkl.gz', batch_size=20, n_hidden=500):
"""
Demonstrate stochastic gradient descent optimization for a multilayer
perceptron
This is demonstrated on MNIST.
:type learning_rate: float
:param learning_rate: learning rate used (factor for the stochastic
gradient
:type n_epochs: int
:param n_epochs: maximal number of epochs to run the optimizer
:type dataset: string
:param dataset: the path of the MNIST dataset file from
http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz
:type dropout_rate: list
:param dropout_rate: array containing probabilities of retaining a unit
"""
datasets = load_data(dataset)
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
# compute number of minibatches for training, validation and testing
n_train_batches = train_set_x.get_value(borrow=True).shape[0] // batch_size
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] // batch_size
n_test_batches = test_set_x.get_value(borrow=True).shape[0] // batch_size
######################
# BUILD ACTUAL MODEL #
######################
print('... building the model')
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
x = T.matrix('x') # the data is presented as rasterized images
y = T.ivector('y') # the labels are presented as 1D vector of
# [int] labels
rng = np.random.RandomState(1234)
# construct the MLP class
classifier = HiddenMLP(
rng=rng,
input=x,
n_in=28 * 28,
n_hidden=n_hidden,
dropout_rates=dropout_rates,
n_out=10
)
# start-snippet-4
# the cost we minimize during training is the negative log likelihood of
# the model plus the regularization terms (L1 and L2); cost is expressed
# here symbolically
cost = (
classifier.negative_log_likelihood(y)
)
dropout_cost = classifier.drop_negative_log_likelihood(y)
# end-snippet-4
# compiling a Theano function that computes the mistakes that are made
# by the model on a minibatch
test_model = theano.function(
inputs=[index],
outputs=classifier.errors(y),
givens={
x: test_set_x[index * batch_size:(index + 1) * batch_size],
y: test_set_y[index * batch_size:(index + 1) * batch_size]
}
)
validate_model = theano.function(
inputs=[index],
outputs=classifier.errors(y),
givens={
x: valid_set_x[index * batch_size:(index + 1) * batch_size],
y: valid_set_y[index * batch_size:(index + 1) * batch_size]
}
)
# start-snippet-5
# compute the gradient of cost with respect to theta (sotred in params)
# the resulting gradients will be stored in a list gparams
gparams = []
for param in classifier.params:
#Changing cost for with dropout layer and without
gparam = T.grad(dropout_cost, param)
gparams.append(gparam)
# specify how to update the parameters of the model as a list of
# (variable, update expression) pairs
# given two lists of the same length, A = [a1, a2, a3, a4] and
# B = [b1, b2, b3, b4], zip generates a list C of same size, where each
# element is a pair formed from the two lists :
# C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
#Stochastic Gradient Descent (SGD) updates
output = dropout_cost
updates = OrderedDict()
for param, gparam in zip(classifier.params, gparams) :
updates[param] = param - learning_rate * gparam
# compiling a Theano function `train_model` that returns the cost, but
# in the same time updates the parameter of the model based on the rules
# defined in `updates`
train_model = theano.function(
inputs=[index],
outputs=cost,
updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]
}
)
# end-snippet-5
###############
# TRAIN MODEL #
###############
print('... training')
# early-stopping parameters
patience = 10000 # look as this many examples regardless
patience_increase = 2 # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience // 2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_validation_loss = np.inf
best_iter = 0
test_score = 0.
start_time = timeit.default_timer()
epoch = 0
done_looping = False
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in range(n_train_batches):
minibatch_avg_cost = train_model(minibatch_index)
# iteration number
iter = (epoch - 1) * n_train_batches + minibatch_index
if (iter + 1) % validation_frequency == 0:
# compute zero-one loss on validation set
validation_losses = [validate_model(i) for i
in range(n_valid_batches)]
this_validation_loss = np.mean(validation_losses)
print(
'epoch %i, minibatch %i/%i, validation error %f %%' %
(
epoch,
minibatch_index + 1,
n_train_batches,
this_validation_loss * 100.
)
)
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
#improve patience if loss improvement is good enough
if (
this_validation_loss < best_validation_loss *
improvement_threshold
):
patience = max(patience, iter * patience_increase)
best_validation_loss = this_validation_loss
best_iter = iter
# test it on the test set
test_losses = [test_model(i) for i
in range(n_test_batches)]
test_score = np.mean(test_losses)
print((' epoch %i, minibatch %i/%i, test error of '
'best model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))
if patience <= iter:
done_looping = True
break
end_time = timeit.default_timer()
print(('Optimization complete. Best validation score of %f %% '
'obtained at iteration %i, with test performance %f %%') %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print(('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.)), file=sys.stderr)
if __name__ == '__main__':
test_mlp()