-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
67 lines (52 loc) · 1.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import matplotlib.pyplot as plt
import numpy as np
from scipy.fft import fft, fftfreq
import svg
SAMPLE_FROM_IMAGE = True
ImagePath = "SampleImages/earth.svg"
OutputFileName = "output.txt"
samples = []
num_samples = 2000
sampling_frequency = 2000
function_period = 2 * np.pi
# If SAMPLE_FROM_IMAGE is False it samples the function f(t)
def f(t):
# return np.cos(3*t) + 1j * np.sin(t)
return np.cos(t / 2) * np.sin(8 * t) * np.exp(1j * t)
# return interpolator_complex(t)
fig, ax = plt.subplots()
if SAMPLE_FROM_IMAGE:
samples = svg.getpoints(ImagePath, num_samples)
else:
for i in range(num_samples):
# The time elapsed at the i-th sample is i*T -> 1/f
t = function_period * i / sampling_frequency
samples.append(f(t))
# extract real part
x_p = [ele.real for ele in samples]
# extract imaginary part
y_p = [ele.imag for ele in samples]
# plot the complex numbers
plt.scatter(x_p, y_p)
plt.ylabel('Imaginary')
plt.xlabel('Real')
plt.show()
fig.savefig("Samples in complex plane.png")
# Calculating the fft and the corresponding frequencies
fourier_transform = fft(samples)
fourier_frequencies = fftfreq(num_samples, 1 / sampling_frequency)
fig, ax = plt.subplots()
ax.plot(fourier_frequencies, np.abs(fourier_transform))
fig.savefig("Fourier Transform.png")
# Calculating the maximum abs value of the fft values to normalize them
max_abs = 0
for i in fourier_transform:
if np.abs(i) > max_abs:
max_abs = np.abs(i)
# Writing the data to the output file
f = open(OutputFileName, "w")
for i in range(num_samples):
omega = str(fourier_frequencies[i])
mod = str(np.abs(fourier_transform[i]) / max_abs) # Dividing by max_abs to normalize the values
phase = str(np.angle(fourier_transform[i]))
f.write(omega + ";" + mod + ";" + phase + "\n")