-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodeSamples.yaml
276 lines (235 loc) · 8.59 KB
/
codeSamples.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
overlay: 1.0.0
info:
title: CodeSamples overlay for python target
version: 0.0.0
actions:
- target: $["paths"]["/audio-to-text"]["post"]
update:
x-codeSamples:
- lang: python
label: genAudioToText
source: |-
from livepeer_ai import Livepeer
with Livepeer(
http_bearer="<YOUR_BEARER_TOKEN_HERE>",
) as livepeer:
res = livepeer.generate.audio_to_text(request={
"audio": {
"file_name": "example.file",
"content": open("example.file", "rb"),
},
"model_id": "",
"return_timestamps": "true",
})
assert res.text_response is not None
# Handle response
print(res.text_response)
- target: $["paths"]["/image-to-image"]["post"]
update:
x-codeSamples:
- lang: python
label: genImageToImage
source: |-
from livepeer_ai import Livepeer
with Livepeer(
http_bearer="<YOUR_BEARER_TOKEN_HERE>",
) as livepeer:
res = livepeer.generate.image_to_image(request={
"prompt": "<value>",
"image": {
"file_name": "example.file",
"content": open("example.file", "rb"),
},
"model_id": "",
"loras": "",
"strength": 0.8,
"guidance_scale": 7.5,
"image_guidance_scale": 1.5,
"negative_prompt": "",
"safety_check": True,
"num_inference_steps": 100,
"num_images_per_prompt": 1,
})
assert res.image_response is not None
# Handle response
print(res.image_response)
- target: $["paths"]["/image-to-text"]["post"]
update:
x-codeSamples:
- lang: python
label: genImageToText
source: |-
from livepeer_ai import Livepeer
with Livepeer(
http_bearer="<YOUR_BEARER_TOKEN_HERE>",
) as livepeer:
res = livepeer.generate.image_to_text(request={
"image": {
"file_name": "example.file",
"content": open("example.file", "rb"),
},
"prompt": "",
"model_id": "",
})
assert res.image_to_text_response is not None
# Handle response
print(res.image_to_text_response)
- target: $["paths"]["/image-to-video"]["post"]
update:
x-codeSamples:
- lang: python
label: genImageToVideo
source: |-
from livepeer_ai import Livepeer
with Livepeer(
http_bearer="<YOUR_BEARER_TOKEN_HERE>",
) as livepeer:
res = livepeer.generate.image_to_video(request={
"image": {
"file_name": "example.file",
"content": open("example.file", "rb"),
},
"model_id": "",
"height": 576,
"width": 1024,
"fps": 6,
"motion_bucket_id": 127,
"noise_aug_strength": 0.02,
"safety_check": True,
"num_inference_steps": 25,
})
assert res.video_response is not None
# Handle response
print(res.video_response)
- target: $["paths"]["/live-video-to-video"]["post"]
update:
x-codeSamples:
- lang: python
label: genLiveVideoToVideo
source: |-
from livepeer_ai import Livepeer
with Livepeer(
http_bearer="<YOUR_BEARER_TOKEN_HERE>",
) as livepeer:
res = livepeer.generate.live_video_to_video(request={
"subscribe_url": "https://soulful-lava.org/",
"publish_url": "https://vain-tabletop.biz",
"control_url": "",
"events_url": "",
"model_id": "",
})
assert res.live_video_to_video_response is not None
# Handle response
print(res.live_video_to_video_response)
- target: $["paths"]["/llm"]["post"]
update:
x-codeSamples:
- lang: python
label: genLLM
source: |-
from livepeer_ai import Livepeer
with Livepeer(
http_bearer="<YOUR_BEARER_TOKEN_HERE>",
) as livepeer:
res = livepeer.generate.llm(request={
"messages": [
],
"model": "",
"temperature": 0.7,
"max_tokens": 256,
"top_p": 1,
"top_k": -1,
"stream": False,
})
assert res.llm_response is not None
# Handle response
print(res.llm_response)
- target: $["paths"]["/segment-anything-2"]["post"]
update:
x-codeSamples:
- lang: python
label: genSegmentAnything2
source: |-
from livepeer_ai import Livepeer
with Livepeer(
http_bearer="<YOUR_BEARER_TOKEN_HERE>",
) as livepeer:
res = livepeer.generate.segment_anything2(request={
"image": {
"file_name": "example.file",
"content": open("example.file", "rb"),
},
"model_id": "",
"multimask_output": True,
"return_logits": True,
"normalize_coords": True,
})
assert res.masks_response is not None
# Handle response
print(res.masks_response)
- target: $["paths"]["/text-to-image"]["post"]
update:
x-codeSamples:
- lang: python
label: genTextToImage
source: |-
from livepeer_ai import Livepeer
with Livepeer(
http_bearer="<YOUR_BEARER_TOKEN_HERE>",
) as livepeer:
res = livepeer.generate.text_to_image(request={
"model_id": "",
"loras": "",
"prompt": "<value>",
"height": 576,
"width": 1024,
"guidance_scale": 7.5,
"negative_prompt": "",
"safety_check": True,
"num_inference_steps": 50,
"num_images_per_prompt": 1,
})
assert res.image_response is not None
# Handle response
print(res.image_response)
- target: $["paths"]["/text-to-speech"]["post"]
update:
x-codeSamples:
- lang: python
label: genTextToSpeech
source: |-
from livepeer_ai import Livepeer
with Livepeer(
http_bearer="<YOUR_BEARER_TOKEN_HERE>",
) as livepeer:
res = livepeer.generate.text_to_speech(request={
"model_id": "",
"text": "",
"description": "A male speaker delivers a slightly expressive and animated speech with a moderate speed and pitch.",
})
assert res.audio_response is not None
# Handle response
print(res.audio_response)
- target: $["paths"]["/upscale"]["post"]
update:
x-codeSamples:
- lang: python
label: genUpscale
source: |-
from livepeer_ai import Livepeer
with Livepeer(
http_bearer="<YOUR_BEARER_TOKEN_HERE>",
) as livepeer:
res = livepeer.generate.upscale(request={
"prompt": "<value>",
"image": {
"file_name": "example.file",
"content": open("example.file", "rb"),
},
"model_id": "",
"safety_check": True,
"num_inference_steps": 75,
})
assert res.image_response is not None
# Handle response
print(res.image_response)