-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.test.ts
224 lines (177 loc) · 7.21 KB
/
nn.test.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import { Model } from "../src/nn";
import { Tensor } from "../src/tensor";
import { expect, test, describe } from "bun:test";
Tensor.defaultDevice = "cpu";
let xor_train = [
{ input: [0, 0], output: [0] },
{ input: [0, 1], output: [1] },
{ input: [1, 0], output: [1] },
{ input: [1, 1], output: [0] }
];
let and_train = [
{ input: [0, 0], output: [0] },
{ input: [0, 1], output: [0] },
{ input: [1, 0], output: [0] },
{ input: [1, 1], output: [1] }
];
describe("Neural Network testing", () => {
test("Basic Operations 1 Perceptron like, no activation", () => {
let x = new Tensor([4, 6], [1, 2]);
let w = new Tensor([1, 0], [2, 1]);
let b = new Tensor([1], [1]);
let y = x.mul(w).add(b);
expect(y.data).toEqual([5]);
});
test("Basic Operations 2 Perceptron like, no activation", () => {
let x = new Tensor([4, 6], [1, 2]);
let w = new Tensor([1, 0, 0, 1], [2, 2]);
let b = new Tensor([1, 1], [1, 2]);
let y = x.mul(w).add(b);
let w2 = new Tensor([1, 0], [2, 1]);
let b2 = new Tensor([1], [1]);
let y2 = y.mul(w2).add(b2);
expect(y2.data).toEqual([6]);
});
test("Basic Operations 2 Perceptron like, with activation", () => {
let x = new Tensor([4, 6], [1, 2]);
let w = new Tensor([1, 0, 0, 1], [2, 2]);
let b = new Tensor([1, 1], [1, 2]);
let y = x.mul(w).add(b).ReLU();
let w2 = new Tensor([1, 0], [2, 1]);
let b2 = new Tensor([1], [1]);
let y2 = y.mul(w2).add(b2).ReLU();
expect(y2.data).toEqual([6]);
});
test("MLP 1 neuron learns, single step", () => {
let model = new Model([2, 1]);
let x = new Tensor([3, 4], [1, 2]);
let desired = new Tensor([14], [1, 1]);
let loss = model.forward(x).sub(desired).pow(2);
loss.backward();
model.learn(0.01);
let loss2 = model.forward(x).sub(desired).pow(2);
expect(loss2.data[0]).toBeLessThan(loss.data[0]);
});
test("MLP 1 neuron learns, 10 steps", () => {
let model = new Model([2, 1]);
let x = new Tensor([3, 4], [1, 2]);
let desired = new Tensor([14], [1, 1]);
for (let i = 0; i < 10; i++) {
model.zeroGrad();
let loss = model.forward(x).sub(desired).pow(2);
loss.backward();
model.learn(0.01);
let loss2 = model.forward(x).sub(desired).pow(2);
expect(loss2.data[0]).toBeLessThan(loss.data[0]);
}
});
test("MLP 1 neuron learns AND gate, single step", () => {
let model = new Model([2, 1]);
let lr = 0.01;
let loss = new Tensor([0], [1], "loss");
for (let sample of and_train) {
let x = new Tensor(sample.input, [1, 2]);
let desired = new Tensor(sample.output, [1, 1]);
let y = model.forward(x);
loss = loss.add(y.sub(desired).pow(2));
}
loss = loss.mul(1.0 / and_train.length);
loss.backward();
model.learn(lr);
let loss2 = new Tensor([0], [1], "loss");
for (let sample of and_train) {
let x = new Tensor(sample.input, [1, 2]);
let desired = new Tensor(sample.output, [1, 1]);
let y = model.forward(x);
loss2 = loss2.add(y.sub(desired).pow(2));
}
loss2 = loss2.mul(1.0 / and_train.length);
expect(loss2.data[0]).toBeLessThan(loss.data[0]);
expect(loss.data[0]).toBeGreaterThan(0);
expect(loss2.data[0]).toBeGreaterThan(0);
});
test("MLP 1 neuron learns AND gate, 1000 steps", () => {
let model = new Model([2, 1]);
let lr = 0.01;
let previousLoss = new Tensor([Number.MAX_VALUE], [1], "loss");
for (let i = 0; i < 1000; i++) {
model.zeroGrad();
let loss = new Tensor([0], [1], "loss");
for (let sample of and_train) {
let x = new Tensor(sample.input, [1, 2]);
let desired = new Tensor(sample.output, [1, 1]);
let y = model.forward(x);
loss = loss.add(y.sub(desired).pow(2));
}
loss = loss.mul(1.0 / and_train.length);
loss.backward();
model.learn(lr);
expect(loss.data[0]).toBeLessThan(previousLoss.data[0]);
expect(loss.data[0]).toBeGreaterThan(0);
previousLoss = loss.copy();
}
for (let sample of and_train) {
let x = new Tensor(sample.input, [1, 2]);
let y = model.forward(x);
expect(y.data[0] > 0.5 ? 1 : 0).toEqual(sample.output[0]);
}
});
test("MLP 3 neurons learn XOR gate, single step", () => {
let model = new Model([2, 2, 1]);
let lr = 0.1;
let loss = new Tensor([0], [1], "loss");
for (let sample of xor_train) {
let x = new Tensor(sample.input, [1, 2]);
let desired = new Tensor(sample.output, [1, 1]);
let y = model.forward(x);
loss = loss.add(y.sub(desired).pow(2));
}
loss = loss.mul(1.0 / and_train.length);
loss.backward();
model.learn(lr);
let loss2 = new Tensor([0], [1], "loss");
for (let sample of and_train) {
let x = new Tensor(sample.input, [1, 2]);
let desired = new Tensor(sample.output, [1, 1]);
let y = model.forward(x);
loss2 = loss2.add(y.sub(desired).pow(2));
}
loss2 = loss2.mul(1.0 / and_train.length);
expect(loss2.data[0]).toBeLessThan(loss.data[0]);
expect(loss.data[0]).toBeGreaterThan(0);
expect(loss2.data[0]).toBeGreaterThan(0);
});
test("MLP 3 neurons learn XOR gate, 1000 steps", () => {
let model = new Model([2, 2, 1]);
let lr = 0.1;
// heavy on the magic numbers
model.layers[0].w = new Tensor([-0.8468587983395675, 0.8232307232300605, 0.8468587989469499, -0.8232307259414902], [2, 2]);
model.layers[0].b = new Tensor([1.0591844213091538e-9, -2.82655284519338e-9], [1, 2]);
model.layers[1].w = new Tensor([1.1927618106561708, 1.2269960337239865], [2, 1]);
model.layers[1].b = new Tensor([1.0225553790039269e-7], [1]);
let previousLoss = new Tensor([Number.MAX_VALUE], [1], "loss");
for (let i = 0; i < 1000; i++) {
model.zeroGrad();
lr = lr * 0.999;
let loss = new Tensor([0], [1], "loss");
for (let sample of xor_train) {
let x = new Tensor(sample.input, [1, 2]);
let desired = new Tensor(sample.output, [1, 1]);
let y = model.forward(x);
loss = loss.add(y.sub(desired).pow(2));
}
loss = loss.mul(1.0 / and_train.length);
previousLoss = loss.copy();
loss.backward();
model.learn(lr);
expect(loss.data[0]).toBeGreaterThan(0);
}
if (previousLoss.data[0] < 0.01) {
for (let sample of xor_train) {
let x = new Tensor(sample.input, [1, 2]);
let y = model.forward(x);
expect(y.data[0] > 0.5 ? 1 : 0).toEqual(sample.output[0]);
}
}
});
});