|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "Pytorch example" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": { |
| 14 | + "collapsed": false, |
| 15 | + "deletable": true, |
| 16 | + "editable": true |
| 17 | + }, |
| 18 | + "outputs": [ |
| 19 | + { |
| 20 | + "name": "stdout", |
| 21 | + "output_type": "stream", |
| 22 | + "text": [ |
| 23 | + "Starting Spark application\n" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "data": { |
| 28 | + "text/html": [ |
| 29 | + "<table>\n", |
| 30 | + "<tr><th>ID</th><th>YARN Application ID</th><th>Kind</th><th>State</th><th>Spark UI</th><th>Driver log</th><th>Current session?</th></tr><tr><td>7717</td><td>application_1513605045578_5456</td><td>pyspark</td><td>idle</td><td><a target=\"_blank\" href=\"http://hadoop30:8088/proxy/application_1513605045578_5456/\">Link</a></td><td><a target=\"_blank\" href=\"http://hadoop17:8042/node/containerlogs/container_e28_1513605045578_5456_01_000001/copystufftest__robin_er\">Link</a></td><td>✔</td></tr></table>" |
| 31 | + ], |
| 32 | + "text/plain": [ |
| 33 | + "<IPython.core.display.HTML object>" |
| 34 | + ] |
| 35 | + }, |
| 36 | + "metadata": {}, |
| 37 | + "output_type": "display_data" |
| 38 | + }, |
| 39 | + { |
| 40 | + "name": "stdout", |
| 41 | + "output_type": "stream", |
| 42 | + "text": [ |
| 43 | + "SparkSession available as 'spark'.\n" |
| 44 | + ] |
| 45 | + } |
| 46 | + ], |
| 47 | + "source": [ |
| 48 | + "def wrapper():\n", |
| 49 | + " import argparse\n", |
| 50 | + " import torch\n", |
| 51 | + " import torch.nn as nn\n", |
| 52 | + " import torch.nn.functional as F\n", |
| 53 | + " import torch.optim as optim\n", |
| 54 | + " from torchvision import datasets, transforms\n", |
| 55 | + " from torch.autograd import Variable\n", |
| 56 | + "\n", |
| 57 | + " # Training settings\n", |
| 58 | + " parser = argparse.ArgumentParser(description='PyTorch MNIST Example')\n", |
| 59 | + " parser.add_argument('--batch-size', type=int, default=64, metavar='N',\n", |
| 60 | + " help='input batch size for training (default: 64)')\n", |
| 61 | + " parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',\n", |
| 62 | + " help='input batch size for testing (default: 1000)')\n", |
| 63 | + " parser.add_argument('--epochs', type=int, default=10, metavar='N',\n", |
| 64 | + " help='number of epochs to train (default: 10)')\n", |
| 65 | + " parser.add_argument('--lr', type=float, default=0.01, metavar='LR',\n", |
| 66 | + " help='learning rate (default: 0.01)')\n", |
| 67 | + " parser.add_argument('--momentum', type=float, default=0.5, metavar='M',\n", |
| 68 | + " help='SGD momentum (default: 0.5)')\n", |
| 69 | + " parser.add_argument('--no-cuda', action='store_true', default=False,\n", |
| 70 | + " help='disables CUDA training')\n", |
| 71 | + " parser.add_argument('--seed', type=int, default=1, metavar='S',\n", |
| 72 | + " help='random seed (default: 1)')\n", |
| 73 | + " parser.add_argument('--log-interval', type=int, default=10, metavar='N',\n", |
| 74 | + " help='how many batches to wait before logging training status')\n", |
| 75 | + " args = parser.parse_args()\n", |
| 76 | + " args.cuda = not args.no_cuda and torch.cuda.is_available()\n", |
| 77 | + "\n", |
| 78 | + " torch.manual_seed(args.seed)\n", |
| 79 | + " if args.cuda:\n", |
| 80 | + " torch.cuda.manual_seed(args.seed)\n", |
| 81 | + "\n", |
| 82 | + "\n", |
| 83 | + " kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}\n", |
| 84 | + " train_loader = torch.utils.data.DataLoader(\n", |
| 85 | + " datasets.MNIST('../data', train=True, download=True,\n", |
| 86 | + " transform=transforms.Compose([\n", |
| 87 | + " transforms.ToTensor(),\n", |
| 88 | + " transforms.Normalize((0.1307,), (0.3081,))\n", |
| 89 | + " ])),\n", |
| 90 | + " batch_size=args.batch_size, shuffle=True, **kwargs)\n", |
| 91 | + " test_loader = torch.utils.data.DataLoader(\n", |
| 92 | + " datasets.MNIST('../data', train=False, transform=transforms.Compose([\n", |
| 93 | + " transforms.ToTensor(),\n", |
| 94 | + " transforms.Normalize((0.1307,), (0.3081,))\n", |
| 95 | + " ])),\n", |
| 96 | + " batch_size=args.test_batch_size, shuffle=True, **kwargs)\n", |
| 97 | + "\n", |
| 98 | + "\n", |
| 99 | + " class Net(nn.Module):\n", |
| 100 | + " def __init__(self):\n", |
| 101 | + " super(Net, self).__init__()\n", |
| 102 | + " self.conv1 = nn.Conv2d(1, 10, kernel_size=5)\n", |
| 103 | + " self.conv2 = nn.Conv2d(10, 20, kernel_size=5)\n", |
| 104 | + " self.conv2_drop = nn.Dropout2d()\n", |
| 105 | + " self.fc1 = nn.Linear(320, 50)\n", |
| 106 | + " self.fc2 = nn.Linear(50, 10)\n", |
| 107 | + "\n", |
| 108 | + " def forward(self, x):\n", |
| 109 | + " x = F.relu(F.max_pool2d(self.conv1(x), 2))\n", |
| 110 | + " x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))\n", |
| 111 | + " x = x.view(-1, 320)\n", |
| 112 | + " x = F.relu(self.fc1(x))\n", |
| 113 | + " x = F.dropout(x, training=self.training)\n", |
| 114 | + " x = self.fc2(x)\n", |
| 115 | + " return F.log_softmax(x)\n", |
| 116 | + "\n", |
| 117 | + " model = Net()\n", |
| 118 | + " if args.cuda:\n", |
| 119 | + " model.cuda()\n", |
| 120 | + "\n", |
| 121 | + " optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)\n", |
| 122 | + "\n", |
| 123 | + " def train(epoch):\n", |
| 124 | + " model.train()\n", |
| 125 | + " for batch_idx, (data, target) in enumerate(train_loader):\n", |
| 126 | + " if args.cuda:\n", |
| 127 | + " data, target = data.cuda(), target.cuda()\n", |
| 128 | + " data, target = Variable(data), Variable(target)\n", |
| 129 | + " optimizer.zero_grad()\n", |
| 130 | + " output = model(data)\n", |
| 131 | + " loss = F.nll_loss(output, target)\n", |
| 132 | + " loss.backward()\n", |
| 133 | + " optimizer.step()\n", |
| 134 | + " if batch_idx % args.log_interval == 0:\n", |
| 135 | + " print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n", |
| 136 | + " epoch, batch_idx * len(data), len(train_loader.dataset),\n", |
| 137 | + " 100. * batch_idx / len(train_loader), loss.data[0]))\n", |
| 138 | + "\n", |
| 139 | + " def test():\n", |
| 140 | + " model.eval()\n", |
| 141 | + " test_loss = 0\n", |
| 142 | + " correct = 0\n", |
| 143 | + " for data, target in test_loader:\n", |
| 144 | + " if args.cuda:\n", |
| 145 | + " data, target = data.cuda(), target.cuda()\n", |
| 146 | + " data, target = Variable(data, volatile=True), Variable(target)\n", |
| 147 | + " output = model(data)\n", |
| 148 | + " test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss\n", |
| 149 | + " pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability\n", |
| 150 | + " correct += pred.eq(target.data.view_as(pred)).cpu().sum()\n", |
| 151 | + "\n", |
| 152 | + " test_loss /= len(test_loader.dataset)\n", |
| 153 | + " print('\\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(\n", |
| 154 | + " test_loss, correct, len(test_loader.dataset),\n", |
| 155 | + " 100. * correct / len(test_loader.dataset)))\n", |
| 156 | + "\n", |
| 157 | + "\n", |
| 158 | + " for epoch in range(1, args.epochs + 1):\n", |
| 159 | + " train(epoch)\n", |
| 160 | + " test()" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": null, |
| 166 | + "metadata": { |
| 167 | + "collapsed": false, |
| 168 | + "deletable": true, |
| 169 | + "editable": true |
| 170 | + }, |
| 171 | + "outputs": [], |
| 172 | + "source": [ |
| 173 | + "from hops import experiment\n", |
| 174 | + "experiment.launch(spark, wrapper)" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": null, |
| 180 | + "metadata": { |
| 181 | + "collapsed": true, |
| 182 | + "deletable": true, |
| 183 | + "editable": true |
| 184 | + }, |
| 185 | + "outputs": [], |
| 186 | + "source": [] |
| 187 | + } |
| 188 | + ], |
| 189 | + "metadata": { |
| 190 | + "kernelspec": { |
| 191 | + "display_name": "PySpark", |
| 192 | + "language": "", |
| 193 | + "name": "pysparkkernel" |
| 194 | + }, |
| 195 | + "language_info": { |
| 196 | + "codemirror_mode": { |
| 197 | + "name": "python", |
| 198 | + "version": 2 |
| 199 | + }, |
| 200 | + "mimetype": "text/x-python", |
| 201 | + "name": "pyspark", |
| 202 | + "pygments_lexer": "python2" |
| 203 | + } |
| 204 | + }, |
| 205 | + "nbformat": 4, |
| 206 | + "nbformat_minor": 2 |
| 207 | +} |
0 commit comments