This repository has been archived by the owner on Oct 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
79 lines (67 loc) · 2.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
from runner import Runner
from common.arguments import get_common_args, get_coma_args, get_mixer_args, get_centralv_args, get_reinforce_args, \
get_commnet_args, get_g2anet_args, get_ucb1_args
from common.marl_logger import MARLLogger
from common.reward_modified_env import RewardShapedStarCraft2Env
from smac.env import StarCraft2Env
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # 解决某个错误 该错误可能由多个conda环境冲突引起
if __name__ == '__main__':
common_args = get_common_args()
logger = MARLLogger(logger_name="MARL", propagate=False, args=common_args)
for i in range(common_args.n_experiment):
args = common_args
if args.alg.find('coma') > -1:
args = get_coma_args(args)
elif args.alg.find('central_v') > -1:
args = get_centralv_args(args)
elif args.alg.find('reinforce') > -1:
args = get_reinforce_args(args)
else:
args = get_mixer_args(args)
if args.alg.find('commnet') > -1:
args = get_commnet_args(args)
if args.alg.find('g2anet') > -1:
args = get_g2anet_args(args)
if args.alg.find('ucb1') > -1:
args = get_ucb1_args(args)
env = RewardShapedStarCraft2Env(
args,
map_name=args.map,
step_mul=args.step_mul,
difficulty=args.difficulty,
game_version=args.game_version,
replay_dir=args.replay_dir,
window_size_x=1024,
window_size_y=768,
reward_only_positive=True,
reward_negative_scale=0.5
)
# env = StarCraft2Env(
# map_name=args.map,
# step_mul=args.step_mul,
# difficulty=args.difficulty,
# game_version=args.game_version,
# replay_dir=args.replay_dir,
# window_size_x=1024,
# window_size_y=768,
# reward_only_positive=False
# )
env_info = env.get_env_info()
args.n_actions = env_info["n_actions"]
args.n_agents = env_info["n_agents"]
args.state_shape = env_info["state_shape"]
args.obs_shape = env_info["obs_shape"]
args.episode_limit = env_info["episode_limit"]
runner = Runner(env, args)
if not args.evaluate:
logger.starting_log(i, args)
runner.run(i)
else:
win_rate, _ = runner.evaluate()
print('The win rate of {} is {}'.format(args.alg, win_rate))
break
logger.info(f"Experiment {i} finished.")
logger.info("#" * 60)
env.close()
runner.tb_writer.close()