|
| 1 | +from __future__ import print_function |
| 2 | + |
| 3 | +import glob |
| 4 | +from itertools import chain |
| 5 | +import os |
| 6 | +import random |
| 7 | +import zipfile |
| 8 | + |
| 9 | +import matplotlib.pyplot as plt |
| 10 | +import numpy as np |
| 11 | +import pandas as pd |
| 12 | +import torch |
| 13 | +import torch.nn as nn |
| 14 | +import torch.nn.functional as F |
| 15 | +import torch.optim as optim |
| 16 | +from linformer import Linformer |
| 17 | +from PIL import Image |
| 18 | +# from sklearn.model_selection import train_test_split |
| 19 | +from torch.optim.lr_scheduler import StepLR |
| 20 | +from torch.utils.data import DataLoader, Dataset |
| 21 | +from torchvision import datasets, transforms |
| 22 | +from tqdm.notebook import tqdm |
| 23 | + |
| 24 | + |
| 25 | +from readDataFromExcel import getDataFromExcelFile |
| 26 | +from vit_pytorch.vit_3d import ViT |
| 27 | + |
| 28 | + |
| 29 | +def seed_everything(seed): |
| 30 | + random.seed(seed) |
| 31 | + os.environ['PYTHONHASHSEED'] = str(seed) |
| 32 | + np.random.seed(seed) |
| 33 | + torch.manual_seed(seed) |
| 34 | + # torch.cuda.manual_seed(seed) |
| 35 | + # torch.cuda.manual_seed_all(seed) |
| 36 | + torch.backends.cudnn.deterministic = True |
| 37 | + |
| 38 | + |
| 39 | +def Img_and_Label(data_obj): |
| 40 | + |
| 41 | + img_list = [] |
| 42 | + label_list = [] |
| 43 | + file_folder = data_obj.imgRootPath |
| 44 | + |
| 45 | + data_dict = data_obj.excelData |
| 46 | + for idx in range(len(data_dict)): |
| 47 | + img_list.append(data_dict[idx]["img"]) |
| 48 | + |
| 49 | + cur_label = data_dict[idx]["label"] |
| 50 | + if cur_label == '0': |
| 51 | + label_float = float(0) |
| 52 | + else: |
| 53 | + label_float = float(1) |
| 54 | + label_list.append(label_float) |
| 55 | + |
| 56 | + uniq_names = [] |
| 57 | + num_images = [] |
| 58 | + label = [] |
| 59 | + label_list_short = [] |
| 60 | + |
| 61 | + for ind, name in enumerate(img_list): |
| 62 | + split_name = name.split("_") |
| 63 | + subj = split_name[0] |
| 64 | + label.append(label_list[ind]) |
| 65 | + |
| 66 | + if subj not in uniq_names: |
| 67 | + uniq_names.append(subj) |
| 68 | + num_images.append(1) |
| 69 | + label_list_short.append(label[-1]) |
| 70 | + else: |
| 71 | + index = uniq_names.index(subj) |
| 72 | + num_images[index] += 1 |
| 73 | + |
| 74 | + files = [[]] |
| 75 | + labels = [] |
| 76 | + ind = 0 |
| 77 | + for idx, subj in enumerate(uniq_names): |
| 78 | + if num_images[uniq_names.index(subj)] != 24: |
| 79 | + print("Subject {} has only {} images".format(subj, num_images[uniq_names.index(subj)])) |
| 80 | + |
| 81 | + else: |
| 82 | + files.append([]) |
| 83 | + for img in range(24): |
| 84 | + if img < 10: |
| 85 | + img_str = "000" + str(img) |
| 86 | + else: |
| 87 | + img_str = "00" + str(img) |
| 88 | + files[ind].append(os.path.join(file_folder, (subj + "_" + img_str + ".bmp")).replace("\\", "/")) |
| 89 | + labels.append(label_list_short[ind]) |
| 90 | + ind += 1 |
| 91 | + |
| 92 | + files = files[0:-1] |
| 93 | + # files = list(filter(None, files)) |
| 94 | + # labels = list(filter(None, labels)) |
| 95 | + return files, labels |
| 96 | + |
| 97 | + |
| 98 | +class MRIDataset(Dataset): |
| 99 | + def __init__(self, data_obj, transform=None): |
| 100 | + files, labels = Img_and_Label(data_obj) |
| 101 | + self.file_list = files |
| 102 | + self.label = labels |
| 103 | + self.transform = transform |
| 104 | + |
| 105 | + def __len__(self): |
| 106 | + self.filelength = len(self.file_list) |
| 107 | + return self.filelength |
| 108 | + |
| 109 | + def __getitem__(self, idx): |
| 110 | + imgs = self.file_list[idx] |
| 111 | + img = np.zeros((224, 224, 24)) |
| 112 | + for idx, cur_img in enumerate(imgs): |
| 113 | + img_here = np.asarray(Image.open(cur_img)) |
| 114 | + assert img_here.dtype == 'uint8' |
| 115 | + img[:, :, idx] = img_here / (2**8) |
| 116 | + |
| 117 | + img = np.float32(img) |
| 118 | + label = np.float32(self.label) |
| 119 | + |
| 120 | + img_transformed = self.transform(img) |
| 121 | + label = self.label[idx] |
| 122 | + |
| 123 | + return img_transformed, label |
| 124 | + |
| 125 | + |
| 126 | +if __name__ == '__main__': |
| 127 | + |
| 128 | + batch_size = 12 |
| 129 | + epochs = 100 |
| 130 | + lr = 3e-5 |
| 131 | + gamma = 0.7 |
| 132 | + seed = 42 |
| 133 | + |
| 134 | + seed_everything(seed) |
| 135 | + |
| 136 | + device = 'cpu' |
| 137 | + |
| 138 | + n_folds = 10 |
| 139 | + cur_dir = os.getcwd() |
| 140 | + print(f"Current Directory: {cur_dir}") |
| 141 | + os.makedirs(os.path.join(cur_dir, "saved_models"), exist_ok=True) |
| 142 | + |
| 143 | + excelFilePath = os.path.join(cur_dir,'Fold_Split.xlsx') |
| 144 | + imgRootPath = "C:/Users/jrb187/PycharmProjects/FITNet/subset_data/2D_Images" |
| 145 | + |
| 146 | + # Transforms to data |
| 147 | + train_transforms = transforms.Compose( |
| 148 | + [ |
| 149 | + transforms.ToTensor(), |
| 150 | + ] |
| 151 | + ) |
| 152 | + |
| 153 | + val_transforms = transforms.Compose( |
| 154 | + [ |
| 155 | + transforms.ToTensor(), |
| 156 | + ] |
| 157 | + ) |
| 158 | + |
| 159 | + for fold in range(n_folds): |
| 160 | + |
| 161 | + excel_sheet_name_train = 'train_fold' + str(fold) |
| 162 | + excel_sheet_name_test = 'valid_fold' + str(fold) |
| 163 | + |
| 164 | + train_obj = getDataFromExcelFile(excelFilePath=excelFilePath, imgRootPath=imgRootPath, excelSheetName=excel_sheet_name_train) |
| 165 | + test_obj = getDataFromExcelFile(excelFilePath=excelFilePath, imgRootPath=imgRootPath, excelSheetName=excel_sheet_name_test) |
| 166 | + |
| 167 | + train_dataset = MRIDataset(train_obj, transform=train_transforms) |
| 168 | + test_dataset = MRIDataset(test_obj, transform=val_transforms) |
| 169 | + |
| 170 | + train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=False) |
| 171 | + test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) |
| 172 | + |
| 173 | + model = ViT(image_size=224, channels =1, frames=24, image_patch_size=16, frame_patch_size=1, num_classes=2, |
| 174 | + dim=14*14*24, depth=6, heads=8, mlp_dim=2048, dropout=0.1, emb_dropout=0.1) |
| 175 | + |
| 176 | + # Training |
| 177 | + criterion = nn.CrossEntropyLoss() |
| 178 | + optimizer = optim.Adam(model.parameters(), lr=lr) |
| 179 | + scheduler = StepLR(optimizer, step_size=1, gamma=gamma) |
| 180 | + |
| 181 | + for epoch in range(epochs): |
| 182 | + epoch_loss = 0 |
| 183 | + epoch_accuracy = 0 |
| 184 | + |
| 185 | + for data, label in train_loader: |
| 186 | + |
| 187 | + # Add 1 (channel) |
| 188 | + data = data.unsqueeze(1) |
| 189 | + assert data.shape == (batch_size, 1, 24, 224, 224) |
| 190 | + |
| 191 | + data = data.to(device) |
| 192 | + label = label.to(device) |
| 193 | + |
| 194 | + output = model(data) |
| 195 | + loss = criterion(output, label) |
| 196 | + |
| 197 | + optimizer.zero_grad() |
| 198 | + loss.backward() |
| 199 | + optimizer.step() |
| 200 | + |
| 201 | + acc = (output.argmax(dim=1) == label).float().mean() |
| 202 | + epoch_accuracy += acc / len(train_loader) |
| 203 | + epoch_loss += loss / len(train_loader) |
| 204 | + |
| 205 | + torch.cuda.empty_cache() |
| 206 | + |
| 207 | + with torch.no_grad(): |
| 208 | + epoch_val_accuracy = 0 |
| 209 | + epoch_val_loss = 0 |
| 210 | + for data, label in test_loader: |
| 211 | + data = data.to(device) |
| 212 | + label = label.to(device) |
| 213 | + |
| 214 | + val_output = model(data) |
| 215 | + val_loss = criterion(val_output, label) |
| 216 | + |
| 217 | + acc = (val_output.argmax(dim=1) == label).float().mean() |
| 218 | + epoch_val_accuracy += acc / len(test_loader) |
| 219 | + epoch_val_loss += val_loss / len(test_loader) |
| 220 | + |
| 221 | + print( |
| 222 | + f"Fold : {fold+1} - Epoch : {epoch + 1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f}\n" |
| 223 | + ) |
| 224 | + |
| 225 | + torch.save(model.state_dict(), './saved_models/{}.pt'.format("fold" + str(fold+1))) |
| 226 | + |
0 commit comments