Skip to content

Commit 43cbcad

Browse files
committed
add a hypersphere vit, adapted from https://arxiv.org/abs/2410.01131
1 parent 82f2fa7 commit 43cbcad

File tree

4 files changed

+272
-3
lines changed

4 files changed

+272
-3
lines changed

README.md

+9
Original file line numberDiff line numberDiff line change
@@ -2133,4 +2133,13 @@ Coming from computer vision and new to transformers? Here are some resources tha
21332133
}
21342134
```
21352135

2136+
```bibtex
2137+
@inproceedings{Loshchilov2024nGPTNT,
2138+
title = {nGPT: Normalized Transformer with Representation Learning on the Hypersphere},
2139+
author = {Ilya Loshchilov and Cheng-Ping Hsieh and Simeng Sun and Boris Ginsburg},
2140+
year = {2024},
2141+
url = {https://api.semanticscholar.org/CorpusID:273026160}
2142+
}
2143+
```
2144+
21362145
*I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.* — Claude Shannon

setup.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
setup(
77
name = 'vit-pytorch',
88
packages = find_packages(exclude=['examples']),
9-
version = '1.7.14',
9+
version = '1.8.0',
1010
license='MIT',
1111
description = 'Vision Transformer (ViT) - Pytorch',
1212
long_description=long_description,

vit_pytorch/normalized_vit.py

+260
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,260 @@
1+
import torch
2+
from torch import nn
3+
from torch.nn import Module, ModuleList
4+
import torch.nn.functional as F
5+
import torch.nn.utils.parametrize as parametrize
6+
7+
from einops import rearrange, reduce
8+
from einops.layers.torch import Rearrange
9+
10+
# functions
11+
12+
def exists(v):
13+
return v is not None
14+
15+
def default(v, d):
16+
return v if exists(v) else d
17+
18+
def pair(t):
19+
return t if isinstance(t, tuple) else (t, t)
20+
21+
def divisible_by(numer, denom):
22+
return (numer % denom) == 0
23+
24+
def l2norm(t, dim = -1):
25+
return F.normalize(t, dim = dim, p = 2)
26+
27+
# for use with parametrize
28+
29+
class L2Norm(Module):
30+
def __init__(self, dim = -1):
31+
super().__init__()
32+
self.dim = dim
33+
34+
def forward(self, t):
35+
return l2norm(t, dim = self.dim)
36+
37+
class NormLinear(Module):
38+
def __init__(
39+
self,
40+
dim,
41+
dim_out,
42+
norm_dim_in = True
43+
):
44+
super().__init__()
45+
self.linear = nn.Linear(dim, dim_out, bias = False)
46+
47+
parametrize.register_parametrization(
48+
self.linear,
49+
'weight',
50+
L2Norm(dim = -1 if norm_dim_in else 0)
51+
)
52+
53+
@property
54+
def weight(self):
55+
return self.linear.weight
56+
57+
def forward(self, x):
58+
return self.linear(x)
59+
60+
# attention and feedforward
61+
62+
class Attention(Module):
63+
def __init__(
64+
self,
65+
dim,
66+
*,
67+
dim_head = 64,
68+
heads = 8,
69+
dropout = 0.
70+
):
71+
super().__init__()
72+
dim_inner = dim_head * heads
73+
self.to_q = NormLinear(dim, dim_inner)
74+
self.to_k = NormLinear(dim, dim_inner)
75+
self.to_v = NormLinear(dim, dim_inner)
76+
77+
self.dropout = dropout
78+
79+
self.qk_scale = nn.Parameter(torch.ones(dim_head) * (dim_head ** 0.25))
80+
81+
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
82+
self.merge_heads = Rearrange('b h n d -> b n (h d)')
83+
84+
self.to_out = NormLinear(dim_inner, dim, norm_dim_in = False)
85+
86+
def forward(
87+
self,
88+
x
89+
):
90+
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
91+
92+
q, k, v = map(self.split_heads, (q, k, v))
93+
94+
# query key rmsnorm
95+
96+
q, k = map(l2norm, (q, k))
97+
q, k = (q * self.qk_scale), (k * self.qk_scale)
98+
99+
# scale is 1., as scaling factor is moved to s_qk (dk ^ 0.25) - eq. 16
100+
101+
out = F.scaled_dot_product_attention(
102+
q, k, v,
103+
dropout_p = self.dropout if self.training else 0.,
104+
scale = 1.
105+
)
106+
107+
out = self.merge_heads(out)
108+
return self.to_out(out)
109+
110+
class FeedForward(Module):
111+
def __init__(
112+
self,
113+
dim,
114+
*,
115+
dim_inner,
116+
dropout = 0.
117+
):
118+
super().__init__()
119+
dim_inner = int(dim_inner * 2 / 3)
120+
121+
self.dim = dim
122+
self.dropout = nn.Dropout(dropout)
123+
124+
self.to_hidden = NormLinear(dim, dim_inner)
125+
self.to_gate = NormLinear(dim, dim_inner)
126+
127+
self.hidden_scale = nn.Parameter(torch.ones(dim_inner))
128+
self.gate_scale = nn.Parameter(torch.ones(dim_inner))
129+
130+
self.to_out = NormLinear(dim_inner, dim, norm_dim_in = False)
131+
132+
def forward(self, x):
133+
hidden, gate = self.to_hidden(x), self.to_gate(x)
134+
135+
hidden = hidden * self.hidden_scale
136+
gate = gate * self.gate_scale * (self.dim ** 0.5)
137+
138+
hidden = F.silu(gate) * hidden
139+
140+
hidden = self.dropout(hidden)
141+
return self.to_out(hidden)
142+
143+
# classes
144+
145+
class nViT(Module):
146+
""" https://arxiv.org/abs/2410.01131 """
147+
148+
def __init__(
149+
self,
150+
*,
151+
image_size,
152+
patch_size,
153+
num_classes,
154+
dim,
155+
depth,
156+
heads,
157+
mlp_dim,
158+
dropout = 0.,
159+
channels = 3,
160+
dim_head = 64,
161+
residual_lerp_scale_init = None
162+
):
163+
super().__init__()
164+
image_height, image_width = pair(image_size)
165+
166+
# calculate patching related stuff
167+
168+
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.'
169+
170+
patch_height_dim, patch_width_dim = (image_height // patch_size), (image_width // patch_size)
171+
patch_dim = channels * (patch_size ** 2)
172+
num_patches = patch_height_dim * patch_width_dim
173+
174+
self.channels = channels
175+
self.patch_size = patch_size
176+
177+
self.to_patch_embedding = nn.Sequential(
178+
Rearrange('b c (h p1) (w p2) -> b (h w) (c p1 p2)', p1 = patch_size, p2 = patch_size),
179+
nn.LayerNorm(patch_dim),
180+
nn.Linear(patch_dim, dim),
181+
nn.LayerNorm(dim),
182+
)
183+
184+
self.abs_pos_emb = nn.Embedding(num_patches, dim)
185+
186+
residual_lerp_scale_init = default(residual_lerp_scale_init, 1. / depth)
187+
188+
# layers
189+
190+
self.dim = dim
191+
self.layers = ModuleList([])
192+
self.residual_lerp_scales = nn.ParameterList([])
193+
194+
for _ in range(depth):
195+
self.layers.append(ModuleList([
196+
Attention(dim, dim_head = dim_head, heads = heads, dropout = dropout),
197+
FeedForward(dim, dim_inner = mlp_dim, dropout = dropout),
198+
]))
199+
200+
self.residual_lerp_scales.append(nn.ParameterList([
201+
nn.Parameter(torch.ones(dim) * residual_lerp_scale_init),
202+
nn.Parameter(torch.ones(dim) * residual_lerp_scale_init),
203+
]))
204+
205+
self.logit_scale = nn.Parameter(torch.ones(num_classes))
206+
207+
self.to_pred = NormLinear(dim, num_classes)
208+
209+
@torch.no_grad()
210+
def norm_weights_(self):
211+
for module in self.modules():
212+
if not isinstance(module, NormLinear):
213+
continue
214+
215+
normed = module.weight
216+
original = module.linear.parametrizations.weight.original
217+
218+
original.copy_(normed)
219+
220+
def forward(self, images):
221+
device = images.device
222+
223+
tokens = self.to_patch_embedding(images)
224+
225+
pos_emb = self.abs_pos_emb(torch.arange(tokens.shape[-2], device = device))
226+
227+
tokens = l2norm(tokens + pos_emb)
228+
229+
for (attn, ff), (attn_alpha, ff_alpha) in zip(self.layers, self.residual_lerp_scales):
230+
231+
attn_out = l2norm(attn(tokens))
232+
tokens = l2norm(tokens.lerp(attn_out, attn_alpha))
233+
234+
ff_out = l2norm(ff(tokens))
235+
tokens = l2norm(tokens.lerp(ff_out, ff_alpha))
236+
237+
pooled = reduce(tokens, 'b n d -> b d', 'mean')
238+
239+
logits = self.to_pred(pooled)
240+
logits = logits * self.logit_scale * (self.dim ** 0.5)
241+
242+
return logits
243+
244+
# quick test
245+
246+
if __name__ == '__main__':
247+
248+
v = nViT(
249+
image_size = 256,
250+
patch_size = 16,
251+
num_classes = 1000,
252+
dim = 1024,
253+
depth = 6,
254+
heads = 8,
255+
mlp_dim = 2048,
256+
)
257+
258+
img = torch.randn(4, 3, 256, 256)
259+
logits = v(img) # (4, 1000)
260+
assert logits.shape == (4, 1000)

vit_pytorch/rvt.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -3,14 +3,14 @@
33
import torch
44
from torch import nn, einsum
55
import torch.nn.functional as F
6-
from torch.cuda.amp import autocast
6+
from torch.amp import autocast
77

88
from einops import rearrange, repeat
99
from einops.layers.torch import Rearrange
1010

1111
# rotary embeddings
1212

13-
@autocast(enabled = False)
13+
@autocast('cuda', enabled = False)
1414
def rotate_every_two(x):
1515
x = rearrange(x, '... (d j) -> ... d j', j = 2)
1616
x1, x2 = x.unbind(dim = -1)

0 commit comments

Comments
 (0)