Skip to content

Commit 89e1996

Browse files
committedDec 2, 2022
add vit with patch dropout, fully embrace structured dropout as multiple papers are now corroborating each other
1 parent 2f87c0c commit 89e1996

File tree

3 files changed

+163
-1
lines changed

3 files changed

+163
-1
lines changed
 

‎README.md

+10
Original file line numberDiff line numberDiff line change
@@ -1873,6 +1873,16 @@ Coming from computer vision and new to transformers? Here are some resources tha
18731873
}
18741874
```
18751875

1876+
```bibtex
1877+
@article{Liu2022PatchDropoutEV,
1878+
title = {PatchDropout: Economizing Vision Transformers Using Patch Dropout},
1879+
author = {Yue Liu and Christos Matsoukas and Fredrik Strand and Hossein Azizpour and Kevin Smith},
1880+
journal = {ArXiv},
1881+
year = {2022},
1882+
volume = {abs/2208.07220}
1883+
}
1884+
```
1885+
18761886
```bibtex
18771887
@misc{vaswani2017attention,
18781888
title = {Attention Is All You Need},

‎setup.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
setup(
44
name = 'vit-pytorch',
55
packages = find_packages(exclude=['examples']),
6-
version = '0.39.1',
6+
version = '0.40.1',
77
license='MIT',
88
description = 'Vision Transformer (ViT) - Pytorch',
99
long_description_content_type = 'text/markdown',

‎vit_pytorch/vit_with_patch_dropout.py

+152
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,152 @@
1+
import torch
2+
from torch import nn
3+
4+
from einops import rearrange, repeat
5+
from einops.layers.torch import Rearrange
6+
7+
# helpers
8+
9+
def pair(t):
10+
return t if isinstance(t, tuple) else (t, t)
11+
12+
# classes
13+
14+
class PatchDropout(nn.Module):
15+
def __init__(self, prob):
16+
super().__init__()
17+
assert 0 <= prob < 1.
18+
self.prob = prob
19+
20+
def forward(self, x):
21+
if not self.training or self.prob == 0.:
22+
return x
23+
24+
b, n, _, device = *x.shape, x.device
25+
26+
batch_indices = torch.arange(b, device = device)
27+
batch_indices = rearrange(batch_indices, '... -> ... 1')
28+
num_patches_keep = max(1, int(n * (1 - self.prob)))
29+
patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices
30+
31+
return x[batch_indices, patch_indices_keep]
32+
33+
class PreNorm(nn.Module):
34+
def __init__(self, dim, fn):
35+
super().__init__()
36+
self.norm = nn.LayerNorm(dim)
37+
self.fn = fn
38+
def forward(self, x, **kwargs):
39+
return self.fn(self.norm(x), **kwargs)
40+
41+
class FeedForward(nn.Module):
42+
def __init__(self, dim, hidden_dim, dropout = 0.):
43+
super().__init__()
44+
self.net = nn.Sequential(
45+
nn.Linear(dim, hidden_dim),
46+
nn.GELU(),
47+
nn.Dropout(dropout),
48+
nn.Linear(hidden_dim, dim),
49+
nn.Dropout(dropout)
50+
)
51+
def forward(self, x):
52+
return self.net(x)
53+
54+
class Attention(nn.Module):
55+
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
56+
super().__init__()
57+
inner_dim = dim_head * heads
58+
project_out = not (heads == 1 and dim_head == dim)
59+
60+
self.heads = heads
61+
self.scale = dim_head ** -0.5
62+
63+
self.attend = nn.Softmax(dim = -1)
64+
self.dropout = nn.Dropout(dropout)
65+
66+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
67+
68+
self.to_out = nn.Sequential(
69+
nn.Linear(inner_dim, dim),
70+
nn.Dropout(dropout)
71+
) if project_out else nn.Identity()
72+
73+
def forward(self, x):
74+
qkv = self.to_qkv(x).chunk(3, dim = -1)
75+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
76+
77+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
78+
79+
attn = self.attend(dots)
80+
attn = self.dropout(attn)
81+
82+
out = torch.matmul(attn, v)
83+
out = rearrange(out, 'b h n d -> b n (h d)')
84+
return self.to_out(out)
85+
86+
class Transformer(nn.Module):
87+
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
88+
super().__init__()
89+
self.layers = nn.ModuleList([])
90+
for _ in range(depth):
91+
self.layers.append(nn.ModuleList([
92+
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
93+
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
94+
]))
95+
def forward(self, x):
96+
for attn, ff in self.layers:
97+
x = attn(x) + x
98+
x = ff(x) + x
99+
return x
100+
101+
class ViT(nn.Module):
102+
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., patch_dropout = 0.25):
103+
super().__init__()
104+
image_height, image_width = pair(image_size)
105+
patch_height, patch_width = pair(patch_size)
106+
107+
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
108+
109+
num_patches = (image_height // patch_height) * (image_width // patch_width)
110+
patch_dim = channels * patch_height * patch_width
111+
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
112+
113+
self.to_patch_embedding = nn.Sequential(
114+
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
115+
nn.Linear(patch_dim, dim),
116+
)
117+
118+
self.pos_embedding = nn.Parameter(torch.randn(num_patches, dim))
119+
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
120+
121+
self.patch_dropout = PatchDropout(patch_dropout)
122+
self.dropout = nn.Dropout(emb_dropout)
123+
124+
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
125+
126+
self.pool = pool
127+
self.to_latent = nn.Identity()
128+
129+
self.mlp_head = nn.Sequential(
130+
nn.LayerNorm(dim),
131+
nn.Linear(dim, num_classes)
132+
)
133+
134+
def forward(self, img):
135+
x = self.to_patch_embedding(img)
136+
b, n, _ = x.shape
137+
138+
x += self.pos_embedding
139+
140+
x = self.patch_dropout(x)
141+
142+
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
143+
144+
x = torch.cat((cls_tokens, x), dim=1)
145+
x = self.dropout(x)
146+
147+
x = self.transformer(x)
148+
149+
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
150+
151+
x = self.to_latent(x)
152+
return self.mlp_head(x)

0 commit comments

Comments
 (0)
Please sign in to comment.