-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_PinguProject.R
82 lines (50 loc) · 2.73 KB
/
script_PinguProject.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
####TRABAJO CURSO R, QUARTO Y GITHUB#####
#Luis Carmona Rosado#
#Escuela de doctorado UAH#
#Universidad Alcalá de Henares#
#6-10 de febrero de 2023#
#Para realizar el trabajo vamos a utilizar los datos de Palmerpenguis#
#Instalaremos el paquete "parmerperguis"
install.packages("palmerpenguins")
library(palmerpenguins)
penguins
dt <- data.frame(penguins)
#Cargar paquetes
library(tidyverse)
#Observar datos
view(dt)
str(dt)
head(dt)
class(dt)
glimpse(dt)
summarise(dt)
summary(dt)
#DEscriptivos
table(dt$species)
table(dt$species, dt$sex)
result_lenght <- dt %>% summarise(mean(bill_length_mm, na.rm = T), sd(bill_length_mm, na.rm = T), max(bill_length_mm, na.rm = T), min(bill_length_mm, na.rm = T))
result_lenght
result_lenght_sex <- dt %>% filter(!is.na(sex)) %>% group_by(sex ) %>% summarise(mean(bill_length_mm, na.rm = T), sd(bill_length_mm, na.rm = T), max(bill_length_mm, na.rm = T), min(bill_length_mm, na.rm = T))
result_lenght_sex
result_depht <- dt %>% summarise(mean(bill_depth_mm, na.rm = T), sd(bill_depth_mm, na.rm = T), max(bill_depth_mm, na.rm = T), min(bill_depth_mm, na.rm = T))
result_depht
result_depht_sex <- dt %>% filter(!is.na(sex)) %>% group_by(sex ) %>% summarise(mean(bill_depth_mm, na.rm = T), sd(bill_depth_mm, na.rm = T), max(bill_depth_mm, na.rm = T), min(bill_depth_mm, na.rm = T))
result_depht_sex
result_flipper <- dt %>% summarise(mean(flipper_length_mm, na.rm = T), sd(flipper_length_mm, na.rm = T), max(flipper_length_mm, na.rm = T), min(flipper_length_mm, na.rm = T))
result_flipper
result_flipper_sex <- dt %>% filter(!is.na(sex)) %>% group_by(sex ) %>% summarise(mean(flipper_length_mm, na.rm = T), sd(flipper_length_mm, na.rm = T), max(flipper_length_mm, na.rm = T), min(flipper_length_mm, na.rm = T))
result_flipper_sex
result_bodymass <- dt %>% summarise(mean(body_mass_g, na.rm = T), sd(body_mass_g, na.rm = T), max(body_mass_g, na.rm = T), min(body_mass_g, na.rm = T))
result_bodymass
result_bodymass_sex <- dt %>% filter(!is.na(sex)) %>% group_by(sex ) %>% summarise(mean(body_mass_g, na.rm = T), sd(body_mass_g, na.rm = T), max(body_mass_g, na.rm = T), min(body_mass_g, na.rm = T))
result_bodymass_sex
##Grafica
ggplot(data = dt, aes( x = as.character(island), fill = species)) +
geom_bar() + scale_fill_manual(values = c("orange", "purple", "blue")) +
labs(x ="Islands", y = "Number of individuals") +
theme_classic()
table(dt$island)
#Boxplots
ggplot(data= subset(dt, !is.na(sex))) + geom_boxplot(aes(x =sex, y = body_mass_g)) + facet_wrap(~species) + labs(x ="Sex", y = "Body mass (gr)") + theme_classic()
#Suplemento
ggplot(dt, aes(x= flipper_length_mm, y = body_mass_g))+ geom_jitter() + labs(x ="Longitud aleta", y = "Tamaño pingüino (gr)") + geom_smooth(method = lm) + theme_classic()