-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstruct_tree.py
314 lines (253 loc) · 10.3 KB
/
construct_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from http.client import PROXY_AUTHENTICATION_REQUIRED
import numpy as np
import time
import os
import pandas as pd
from sklearn.cluster import KMeans
import joblib
import pickle as pkl
import logging
import pycuda.autoinit
import pycuda.driver as cuda
import numpy as np
from pycuda.compiler import SourceModule
import sys
start = end = 0
# cuda_code = """
# __global__ void kmeans(float* embeddings_list, float* centroids_list, int* labels_list, int k_value, int n_value, int dim_size, float* cluster_embeddings_to_be_returned) {
# int current_idx = blockIdx.x * blockDim.x + threadIdx.x;
# if (current_idx < n_value) {
# float minimum_distance = 0;
# int current_cluster_id = 0;
# for (int i = 0; i < k_value; ++i) {
# float dist_value = 0;
# for (int j = 0; j < dim_size; ++j) {
# float difference = embeddings_list[current_idx * dim_size + j] - centroids_list[i * dim_size + j];
# dist_value += difference * difference;
# }
# if (dist_value < minimum_distance) {
# minimum_distance = dist_value;
# current_cluster_id = i;
# }
# }
# labels_list[current_idx] = current_cluster_id;
# for (int j = 0; j < dim_size; ++j) {
# atomicAdd(&cluster_embeddings_to_be_returned[current_cluster_id * dim_size + j], embeddings_list[current_idx * dim_size + j]);
# }
# }
# }
# """
cuda_code = '''
__global__ void kmeans(float* embeddings_list, float* centroids_list, int* labels_list, int k_value, int n_value, int dim_size, float* cluster_embeddings_to_be_returned) {
extern __shared__ float shared_centroids[];
int current_idx = blockIdx.x * blockDim.x + threadIdx.x;
// Copy centroids to shared memory
if (threadIdx.x < k_value * dim_size) {
shared_centroids[threadIdx.x] = centroids_list[threadIdx.x];
}
__syncthreads();
if (current_idx < n_value) {
float minimum_distance = 1e10; // Set to a large initial value
int current_cluster_id = 0;
// Calculate Euclidean distance using shared memory for centroids
for (int i = 0; i < k_value; ++i) {
float dist_value = 0;
for (int j = 0; j < dim_size; ++j) {
float difference = embeddings_list[current_idx * dim_size + j] - shared_centroids[i * dim_size + j];
dist_value += difference * difference;
}
if (dist_value < minimum_distance) {
minimum_distance = dist_value;
current_cluster_id = i;
}
}
labels_list[current_idx] = current_cluster_id;
// Use atomicAdd to update cluster_embeddings_to_be_returned
for (int j = 0; j < dim_size; ++j) {
atomicAdd(&cluster_embeddings_to_be_returned[current_cluster_id * dim_size + j], embeddings_list[current_idx * dim_size + j]);
}
}
}
'''
def save_object(obj, path):
with open(path,'wb') as f:
pkl.dump(obj,f)
def load_object(path):
with open(path, 'rb') as f:
obj = pkl.load(f)
return obj
def init_logging():
handlers = [logging.StreamHandler()]
handlers.append(logging.FileHandler("edit.log", mode="w"))
logging.basicConfig(handlers=handlers, format="[%(asctime)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
#logging.info("COMMAND: %s" % " ".join(sys.argv))
def _node_list(root):
def node_val(node):
if(node.isleaf == False):
return node.val
else:
return node.val
node_queue = [root]
arr_arr_node = []
arr_arr_node.append([node_val(node_queue[0])])
while node_queue:
tmp = []
tmp_val = []
for node in node_queue:
for child in node.children:
tmp.append(child)
tmp_val.append(node_val(child))
if len(tmp_val) > 0:
arr_arr_node.append(tmp_val)
node_queue = tmp
return arr_arr_node
class TreeNode(object):
"""define the tree node structure."""
def __init__(self, x ,item_embedding = None, layer = None):
self.val = x
self.embedding = item_embedding
self.parent = None
self.children = []
self.isleaf = False
self.pids = []
self.layer = layer
def getval(self):
return self.val
def getchildren(self):
return self.children
def add(self, node):
##if full
if len(self.children) == 10:
return False
else:
self.children.append(node)
class TreeInitialize(object):
""""Build the random binary tree."""
def __init__(self, pid_embeddings, pids, blance_factor=3, leaf_factor=200):
self.embeddings = pid_embeddings
self.pids = pids
self.root = None
self.blance_factor = blance_factor
self.leaf_factor = leaf_factor
self.leaf_dict = {}
self.node_dict = {}
self.node_size = 0
def _k_means_clustering(self, pid_embeddings):
logging.info(len(pid_embeddings))
if len(pid_embeddings)>4096:
idxs = np.arange(pid_embeddings.shape[0])
np.random.shuffle(idxs)
idxs = idxs[0:4096]
train_embeddings = pid_embeddings[idxs]
else:
train_embeddings = pid_embeddings
######################################################################################
print("Train Embeddings",train_embeddings.shape)
module = SourceModule(cuda_code)
kmeans_kernel = module.get_function("kmeans")
embeddings_gpu = cuda.mem_alloc(train_embeddings.nbytes)
centroids = np.random.rand(3, 2).astype(np.float32)
centroids_gpu = cuda.mem_alloc(centroids.nbytes)
labels = np.empty(train_embeddings.shape[0], dtype=np.int32)
labels_gpu = cuda.mem_alloc(labels.nbytes)
cluster_e = np.zeros((train_embeddings.shape[0],train_embeddings.shape[1]),dtype=np.int32)
cluster_gpu = cuda.mem_alloc(cluster_e.nbytes)
cuda.memcpy_htod(embeddings_gpu, train_embeddings)
cuda.memcpy_htod(centroids_gpu, centroids)
block_size = 256
grid_size = (train_embeddings.shape[0] + block_size - 1) // block_size
grid_size = 256
start = time.time()
kmeans_kernel(embeddings_gpu, centroids_gpu, labels_gpu, np.int32(3), np.int32(train_embeddings.shape[0]), np.int32(train_embeddings.shape[1]), cluster_gpu, block=(block_size, 1, 1), grid=(grid_size, 1))
print(labels)
cuda.Context.synchronize()
end = time.time()
cuda.memcpy_dtoh(labels, labels_gpu)
cuda.Context.synchronize() # Ensure that the operation is completed before checking for errors
err = cuda.getLastError()
if err != cuda.SUCCESS:
print("CUDA error: {}".format(err))
cuda.memcpy_dtoh(cluster_e,cluster_gpu)
######################################################################################
print("Time taken : ",end - start)
l = [cluster_e,labels]
return l
def _build_ten_tree(self, root, pid_embeddings, pids, layer):
logging.info("build tree, layer:" + str(layer))
if len(pids) < self.leaf_factor:
root.isleaf = True
root.pids = pids
self.leaf_dict[root.val] = root
return root
l = self._k_means_clustering(pid_embeddings)
clusters_embeddings = l[0]
labels = l[1]
logging.info("_k_means_clustering finished")
for i in range(self.blance_factor): ## self.blance_factor < 10
val = root.val + str(i)
node = TreeNode(x = val, item_embedding=clusters_embeddings[i],layer=layer+1)
node.parent = root
index = np.where(labels == i)[0]
pid_embedding = pid_embeddings[index]
pid = pids[index]
node = self._build_ten_tree(node, pid_embedding, pid, layer+1)
root.add(node)
return root
def clustering_tree(self):
root = TreeNode('0')
self.root = self._build_ten_tree(root, self.embeddings, self.pids, layer = 0)
return self.root
if __name__ == '__main__':
type = "passage"
max_pid = 1000
pass_embedding_dir = f'passages.memmap'
init_logging();
logging.info("work");
## build tree
output_path = "/zfs/dyslexia/IR/check/JTR-main/tree/passage/cluster_tree"
tree_path = output_path + "/tree.pkl"
dict_label = {}
pid_embeddings_all = np.memmap(pass_embedding_dir,dtype=np.float32,mode="r").reshape(-1,768)
pids_all = [x for x in range(pid_embeddings_all.shape[0])]
pids_all = np.array(pids_all)
# print(pid_embeddings_all)
# print(pids_all)
tree = TreeInitialize(pid_embeddings_all, pids_all)
# logging.info("tree initial finished")
_ = tree.clustering_tree()
# logging.info("clustering_tree finished!")
save_object(tree,tree_path)
logging.info("save_object called")
## save node_dict
tree = load_object(tree_path)
node_dict = {}
node_queue = [tree.root]
val = []
while node_queue:
current_node = node_queue.pop(0)
node_dict[current_node.val] = current_node
for child in current_node.children:
node_queue.append(child)
print("node dict length")
print(len(node_dict))
print("leaf dict length")
print(len(tree.leaf_dict))
save_object(node_dict,f"{output_path}/node_dict.pkl")
## save node_list
tree = load_object(tree_path)
root = tree.root
node_list = _node_list(root)
save_object(node_list,f"{output_path}/node_list.pkl")
## pid2cluster
for leaf in tree.leaf_dict:
node = tree.leaf_dict[leaf]
pids = node.pids
for pid in pids:
dict_label[pid] = str(node.val)
df = pd.DataFrame.from_dict(dict_label, orient='index',columns=['labels'])
df = df.reset_index().rename(columns = {'index':'pid'})
df.to_csv(f"{output_path}/pid_labelid.memmap",header=False, index=False)
print('end')
tree = load_object(tree_path)
print(len(tree.leaf_dict))
save_object(tree.leaf_dict,'leaf_dict.pkl')