Skip to content

Commit 3559ca8

Browse files
committed
docs(notes): add linear algebra introduction
1 parent 375820e commit 3559ca8

File tree

1 file changed

+99
-0
lines changed

1 file changed

+99
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,99 @@
1+
---
2+
title: "Linear Algebra - Introduction to Scalars, Vectors, and Matrices"
3+
lang: en
4+
layout: post
5+
audio: false
6+
translated: false
7+
generated: true
8+
---
9+
10+
## **1. Introduction**
11+
Linear algebra is a branch of mathematics that deals with **scalars, vectors, matrices, and linear transformations**. It is a foundational subject in various fields, including **science, engineering, computer science, physics, and economics**.
12+
13+
### **Definition and Importance**
14+
Linear algebra is the study of linear equations, vector spaces, and linear transformations. It provides tools to model real-world problems and solve them using systematic methods. Some important applications include:
15+
- **Engineering**: Structural analysis, electrical circuit design, control systems
16+
- **Physics**: Quantum mechanics, relativity, optics
17+
- **Computer Science**: Machine learning, graphics, data compression
18+
- **Economics**: Input-output models, optimization problems
19+
20+
---
21+
22+
## **2. Scalars, Vectors, and Matrices**
23+
24+
### **Scalars**
25+
A **scalar** is a single numerical value, typically representing magnitude. Scalars are used in algebra and calculus, such as:
26+
\[
27+
a = 5, \quad b = -3, \quad c = 2.7
28+
\]
29+
Scalars follow the usual arithmetic rules (addition, multiplication, etc.).
30+
31+
---
32+
33+
### **Vectors**
34+
A **vector** is an ordered list of numbers, which can be visualized as an arrow in space. Vectors are used to represent quantities with both **magnitude** and **direction**, such as force, velocity, and acceleration.
35+
36+
#### **Notation:**
37+
A vector in **2D space**:
38+
\[
39+
\mathbf{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}
40+
\]
41+
A vector in **3D space**:
42+
\[
43+
\mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}
44+
\]
45+
Vectors can be **added, subtracted, and multiplied by scalars**.
46+
47+
#### **Vector Operations:**
48+
1. **Addition and Subtraction**
49+
\[
50+
\mathbf{v} + \mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}
51+
\]
52+
2. **Scalar Multiplication**
53+
\[
54+
2 \mathbf{v} = 2 \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}
55+
\]
56+
57+
---
58+
59+
### **Matrices**
60+
A **matrix** is a rectangular array of numbers arranged in rows and columns. Matrices are fundamental in solving systems of equations, computer graphics, and machine learning.
61+
62+
#### **Example of a Matrix:**
63+
A **2×3 matrix** (2 rows, 3 columns):
64+
\[
65+
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}
66+
\]
67+
68+
#### **Basic Matrix Operations:**
69+
1. **Matrix Addition**
70+
\[
71+
A + B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}
72+
\]
73+
2. **Scalar Multiplication**
74+
\[
75+
3A = 3 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}
76+
\]
77+
78+
---
79+
80+
## **3. Applications of Linear Algebra**
81+
82+
### **1. Science & Engineering**
83+
- **Physics**: Motion equations, electromagnetism, quantum mechanics
84+
- **Engineering**: Control systems, robotics, structural analysis
85+
86+
### **2. Computer Science**
87+
- **Machine Learning**: Neural networks, data transformation
88+
- **Graphics**: Image processing, 3D modeling
89+
90+
### **3. Economics**
91+
- **Optimization**: Resource allocation, market models
92+
- **Statistics**: Regression models, data analysis
93+
94+
---
95+
96+
## **Conclusion**
97+
Linear algebra is a powerful mathematical tool used across various fields. Understanding **scalars, vectors, and matrices** helps in solving real-world problems efficiently. The next step is to explore **determinants, eigenvalues, and linear transformations** for deeper applications.
98+
99+
Would you like a problem set or further explanations on any topic? 🚀

0 commit comments

Comments
 (0)